Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Converging Shocks

Authors : Nicholas Apazidis, Veronica Eliasson

Published in: Shock Focusing Phenomena

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the beginning of this chapter, we give on overview of early experimental work on generation of converging shocks by various methods ranging from annular shock tubes to cylindrical as well as spherical explosion chambers. These early experimental results along with Guderley’s solution raise important questions of self-similarity and stability of converging shocks. Experimental results showing the dependence of the power-law exponent on the adiabatic exponent for various gases are presented and discussed. We then give an overview of theoretical and numerical results on the stability of converging shocks based on the theory of geometrical shock dynamics. A number of experimental results on shock convergence show that converging shock experiences tendency toward planarity, e.g., generation of plane sides and sharp corners in initially cylindrical shock front. In this respect several sections of this chapter are devoted to experimental as well as numerical work on convergence of polygonal shocks and their ability to preserve symmetry and thus enhance the final energy density. Production of cylindrical and spherical converging shocks by a gradual change in the shock tube cross-section has been proposed by several researchers. We discuss the basic theoretical and numerical results as well as their experimental realization leading to extreme conditions at the focal area with gas temperatures in excess of 30,000 K. The end of this chapter is devoted to shock generation and focusing in water by means of exploding wire techniques. Experimental findings showing extreme states of matter at the focal area of a converging shock in water generated by a moderate input of initial energy are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahlborn, B., Fong, K.: Stability criteria for converging shock waves. Can. J. Phys. 56(5), 1292–1296 (1978)CrossRef Ahlborn, B., Fong, K.: Stability criteria for converging shock waves. Can. J. Phys. 56(5), 1292–1296 (1978)CrossRef
2.
go back to reference Aki, T., Higashino, F.: A numerical study on implosion of polygonally interacting shocks and consecutive explosion in a box. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 167–172. American Institute of Physics, New York (1989) Aki, T., Higashino, F.: A numerical study on implosion of polygonally interacting shocks and consecutive explosion in a box. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 167–172. American Institute of Physics, New York (1989)
3.
go back to reference Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of extreme state of water by spherical wire array underwater electrical explosion. Phys. Plasmas 19, 102702 (2012)CrossRef Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of extreme state of water by spherical wire array underwater electrical explosion. Phys. Plasmas 19, 102702 (2012)CrossRef
4.
go back to reference Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of converging strong shock wave formed by microsecond timescale underwater electrical explosion of spherical wire array. Appl. Phys. Lett. 102, 124104 (2013)CrossRef Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of converging strong shock wave formed by microsecond timescale underwater electrical explosion of spherical wire array. Appl. Phys. Lett. 102, 124104 (2013)CrossRef
5.
go back to reference Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Diagnostics of a converging strong shock wave generated by underwater explosion of a spherical wire array. J. Appl. Phys. 115, 223303 (2014)CrossRef Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Diagnostics of a converging strong shock wave generated by underwater explosion of a spherical wire array. J. Appl. Phys. 115, 223303 (2014)CrossRef
6.
go back to reference Apazidis, N.: Focusing of weak shock waves in confined axisymmetric chambers. Shock Waves 3, 201–212 (1994)MATHCrossRef Apazidis, N.: Focusing of weak shock waves in confined axisymmetric chambers. Shock Waves 3, 201–212 (1994)MATHCrossRef
7.
go back to reference Apazidis, N.: Numerical investigation of shock induced bubble collapse in water. Phys. Fluids 28, 046101 (2016)CrossRef Apazidis, N.: Numerical investigation of shock induced bubble collapse in water. Phys. Fluids 28, 046101 (2016)CrossRef
8.
9.
go back to reference Apazidis, N., Lesser, M.B., Tillmark, N. Johansson, B.: An experimental and theoretical study of converging shock waves. Shock Waves 12, 39–58 (2002)MATHCrossRef Apazidis, N., Lesser, M.B., Tillmark, N. Johansson, B.: An experimental and theoretical study of converging shock waves. Shock Waves 12, 39–58 (2002)MATHCrossRef
10.
go back to reference Apazidis, N., Kjellander, M., Tillmark, N.: High energy concentration by symmetric shock focusing. Shock Waves 23, 361–368 (2013)CrossRef Apazidis, N., Kjellander, M., Tillmark, N.: High energy concentration by symmetric shock focusing. Shock Waves 23, 361–368 (2013)CrossRef
11.
go back to reference Balasubramanian, K., Eliasson, V.: Numerical investigations of the porosity effect on the shock focusing process. Shock Waves 23(6), 583–594 (2013)CrossRef Balasubramanian, K., Eliasson, V.: Numerical investigations of the porosity effect on the shock focusing process. Shock Waves 23(6), 583–594 (2013)CrossRef
12.
go back to reference Barbry, H., Mounier, C., Saillard, Y.: Transformation d’un choc plan uniforme en choc cylindrique ou spherique uniforme Classical and quantum mechanics, general physics (A1110), Report CEA-N–2516, France (1986) Barbry, H., Mounier, C., Saillard, Y.: Transformation d’un choc plan uniforme en choc cylindrique ou spherique uniforme Classical and quantum mechanics, general physics (A1110), Report CEA-N–2516, France (1986)
13.
go back to reference Baronets, P.: Imploding shock waves in a pulsed induction discharge. Fluid Dyn. 19, 503–508 (1984)CrossRef Baronets, P.: Imploding shock waves in a pulsed induction discharge. Fluid Dyn. 19, 503–508 (1984)CrossRef
14.
go back to reference Betelu, S.I., Aronson, D.G.: Focusing of noncircular self-similar shock waves. Phys. Rev. Lett. 87(7), 074501 (2001) Betelu, S.I., Aronson, D.G.: Focusing of noncircular self-similar shock waves. Phys. Rev. Lett. 87(7), 074501 (2001)
15.
go back to reference Book, D., Löhner, R.: Simulation and theory of the quatrefoil instability of a converging cylindrical shock. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 149–154. American Institute of Physics, New York (1989) Book, D., Löhner, R.: Simulation and theory of the quatrefoil instability of a converging cylindrical shock. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 149–154. American Institute of Physics, New York (1989)
16.
go back to reference Bond, C., Hill, D.J., Meiron, D.I., Dimotakis, P.E.: Shock focusing in a planar convergent geometry: experiment and simulation. J. Fluid Mech. 641, 297–333 (2009)MathSciNetMATHCrossRef Bond, C., Hill, D.J., Meiron, D.I., Dimotakis, P.E.: Shock focusing in a planar convergent geometry: experiment and simulation. J. Fluid Mech. 641, 297–333 (2009)MathSciNetMATHCrossRef
17.
go back to reference Brode, H.L.: Quick estimates of peak overpressure from two simultaneous blast waves. Tech. rep., Tech. Rep. DNA4503T, Defense Nuclear Agency, Aberdeen Proving Ground, MD (1977) Brode, H.L.: Quick estimates of peak overpressure from two simultaneous blast waves. Tech. rep., Tech. Rep. DNA4503T, Defense Nuclear Agency, Aberdeen Proving Ground, MD (1977)
18.
go back to reference Butler, D.: Converging spherical and cylindrical shocks. Report No. 54/54, Burgess Hill, New York (1954) Butler, D.: Converging spherical and cylindrical shocks. Report No. 54/54, Burgess Hill, New York (1954)
19.
go back to reference Cass, A.S.: Comparison of first generation (Dornier HM3) and second generation (Medstone STS) lithotriptors: treatment results with 13,864 renal and ureteral calculi. J. Urology. Am. Urological Ass. 153, 588–592 (1995)MathSciNetCrossRef Cass, A.S.: Comparison of first generation (Dornier HM3) and second generation (Medstone STS) lithotriptors: treatment results with 13,864 renal and ureteral calculi. J. Urology. Am. Urological Ass. 153, 588–592 (1995)MathSciNetCrossRef
20.
21.
go back to reference Chaudhuri, A., Hadjadj, A., Sadot, O., Ben-Dor, G.: Numerical study of shock-wave mitigation through matrices of solid obstacles. Shock Waves 23, 91–101 (2013)CrossRef Chaudhuri, A., Hadjadj, A., Sadot, O., Ben-Dor, G.: Numerical study of shock-wave mitigation through matrices of solid obstacles. Shock Waves 23, 91–101 (2013)CrossRef
22.
go back to reference Chessire, G., Henshaw, W.D.: Composite overlapping meshes for solution of partial differential equations. J. Comput. Phys. 1, 1 (1990) Chessire, G., Henshaw, W.D.: Composite overlapping meshes for solution of partial differential equations. J. Comput. Phys. 1, 1 (1990)
23.
24.
go back to reference Chester, W.: The quasi-cylindrical shock tube. Philos. Mag. 45, 1239–1301 (1954) Chester, W.: The quasi-cylindrical shock tube. Philos. Mag. 45, 1239–1301 (1954)
25.
go back to reference Chisnell, R.F.: The normal motion of shock wave through a non-uniform one-dimensional medium. Proc. R. Soc. A 232, 350–370 (1955)MathSciNetMATHCrossRef Chisnell, R.F.: The normal motion of shock wave through a non-uniform one-dimensional medium. Proc. R. Soc. A 232, 350–370 (1955)MathSciNetMATHCrossRef
26.
go back to reference Chisnell R.F.: The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2(3), 286–298 (1957)MathSciNetMATHCrossRef Chisnell R.F.: The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2(3), 286–298 (1957)MathSciNetMATHCrossRef
28.
go back to reference Christopher, T.: Modeling the Dornier HM3 lithotripter. J. Acoust. Soc. Am. 96(5), 3088–3095 (1994)CrossRef Christopher, T.: Modeling the Dornier HM3 lithotripter. J. Acoust. Soc. Am. 96(5), 3088–3095 (1994)CrossRef
29.
go back to reference Christopher, P.T., Parker, K.J.: New approaches to nonlinear diffractive field propagation. J. Acoust. Soc. Am. 90(5), 488–499 (1991)CrossRef Christopher, P.T., Parker, K.J.: New approaches to nonlinear diffractive field propagation. J. Acoust. Soc. Am. 90(5), 488–499 (1991)CrossRef
30.
go back to reference Cocchi, J.P.,Saurel, R.,Loraud, J.C.: Treatment of interface problems with Godunov-type schemes. Shock Waves 65, 347–357 (1996)MATHCrossRef Cocchi, J.P.,Saurel, R.,Loraud, J.C.: Treatment of interface problems with Godunov-type schemes. Shock Waves 65, 347–357 (1996)MATHCrossRef
31.
go back to reference Coleman, A.J., Saunders, J.E.: A survey of the acoustic output of commercial extracorporeal shockwave lithotripters. Ultasound Med. Biol. 15, 213–227 (1989)CrossRef Coleman, A.J., Saunders, J.E.: A survey of the acoustic output of commercial extracorporeal shockwave lithotripters. Ultasound Med. Biol. 15, 213–227 (1989)CrossRef
32.
go back to reference Davitt, K., Arvengas, A., Caupin, F.: Water at the cavitation limit: density of the metastable liquid and size of the critical bubble. Europhys. Lett. 90, 16002 (2010)CrossRef Davitt, K., Arvengas, A., Caupin, F.: Water at the cavitation limit: density of the metastable liquid and size of the critical bubble. Europhys. Lett. 90, 16002 (2010)CrossRef
33.
go back to reference De Neef, T., Hechtman, C.: Numerical study of the flow due to a cylindrical implosion. Comput. Fluids 6, 185–202 (1978) De Neef, T., Hechtman, C.: Numerical study of the flow due to a cylindrical implosion. Comput. Fluids 6, 185–202 (1978)
34.
go back to reference Demmig, F., Hemmsoth, H.H.: Model computation of converging cylindrical shock waves – initial configurations, propagation, and reflection. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 155–160. American Institute of Physics, New York (1989) Demmig, F., Hemmsoth, H.H.: Model computation of converging cylindrical shock waves – initial configurations, propagation, and reflection. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 155–160. American Institute of Physics, New York (1989)
35.
go back to reference Dennen, R.S., Wilson, L.N.: Electrical generation of imploding shock waves. In: Exploding Wires, pp. 145–157. Plenum Press, New York (1962)CrossRef Dennen, R.S., Wilson, L.N.: Electrical generation of imploding shock waves. In: Exploding Wires, pp. 145–157. Plenum Press, New York (1962)CrossRef
36.
go back to reference Dimotakis, P.E., Samtaney, R.: Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031705 (2006)CrossRef Dimotakis, P.E., Samtaney, R.: Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031705 (2006)CrossRef
37.
go back to reference Dumitrescu, L.Z.: On efficient shock-focusing configurations. In: Proceedings, 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, Australia (1992) Dumitrescu, L.Z.: On efficient shock-focusing configurations. In: Proceedings, 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, Australia (1992)
38.
go back to reference Eliasson, V., Gross, J.: Experimental investigation of shock wave amplification using multiple munitions. In: Ben-Dor, G., et al. (eds.) 30th International Symposium on Shock Waves 2, pp. 1017–1021 (2017)CrossRef Eliasson, V., Gross, J.: Experimental investigation of shock wave amplification using multiple munitions. In: Ben-Dor, G., et al. (eds.) 30th International Symposium on Shock Waves 2, pp. 1017–1021 (2017)CrossRef
39.
go back to reference Eliasson, V., Apazidis, N., Tillmark, N., Lesser, M.B.: Focusing of strong shocks in an annular shock tube. Shock Waves 15, 205–217 (2006)CrossRef Eliasson, V., Apazidis, N., Tillmark, N., Lesser, M.B.: Focusing of strong shocks in an annular shock tube. Shock Waves 15, 205–217 (2006)CrossRef
40.
go back to reference Eliasson, V., Apazidis, N., Tillmark, N.: Controlling the form of strong converging shocks by means of disturbances. Shock Waves 17, 29–42 (2007)CrossRef Eliasson, V., Apazidis, N., Tillmark, N.: Controlling the form of strong converging shocks by means of disturbances. Shock Waves 17, 29–42 (2007)CrossRef
41.
go back to reference Eliasson, V., Tillmark, N., Szeri, A.J., Apazidis, N.: Light emission during shock focusing in air and argon. Phys. Fluids 19, 106106 (2007) Eliasson, V., Tillmark, N., Szeri, A.J., Apazidis, N.: Light emission during shock focusing in air and argon. Phys. Fluids 19, 106106 (2007)
42.
go back to reference Eliasson, V., Kjellander, M., Apazidis, N.: Regular versus Mach reflection for converging polygonal shocks. Shock Waves 17, 43–50 (2007)CrossRef Eliasson, V., Kjellander, M., Apazidis, N.: Regular versus Mach reflection for converging polygonal shocks. Shock Waves 17, 43–50 (2007)CrossRef
43.
go back to reference Eliasson, V., Mello, M., Rosakis, A.J., Dimotakis, P.E.: Experimental investigation of converging shocks in water with various confinement materials. Shock Waves 20, 395–408 (2010)CrossRef Eliasson, V., Mello, M., Rosakis, A.J., Dimotakis, P.E.: Experimental investigation of converging shocks in water with various confinement materials. Shock Waves 20, 395–408 (2010)CrossRef
44.
go back to reference El Mekki-Azouzi, M., Ramboz, C., Lenain, J.-F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9, 38–41 (2013)CrossRef El Mekki-Azouzi, M., Ramboz, C., Lenain, J.-F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9, 38–41 (2013)CrossRef
45.
46.
go back to reference Fisher, J.C.: The fracture of liquids. J. Appl. Phys. 19, 1062–1067 (1948)CrossRef Fisher, J.C.: The fracture of liquids. J. Appl. Phys. 19, 1062–1067 (1948)CrossRef
47.
go back to reference Fong, K., Ahlborn, B.: Stability of converging shock waves. Phys. Fluids 22(3), 416–421 (1979)CrossRef Fong, K., Ahlborn, B.: Stability of converging shock waves. Phys. Fluids 22(3), 416–421 (1979)CrossRef
48.
go back to reference Fujumoto, Y., Mishkin, E.: Analysis of spherically imploding shocks. Phys. Fluids 21, 1933 (1978)MATHCrossRef Fujumoto, Y., Mishkin, E.: Analysis of spherically imploding shocks. Phys. Fluids 21, 1933 (1978)MATHCrossRef
49.
go back to reference Gardner, G.H., Book, D.L., Bernstein I.B.: Stability of imploding shocks in the CCW approximation. J. Fluid Mech. 114, 41–58 (1982)MATHCrossRef Gardner, G.H., Book, D.L., Bernstein I.B.: Stability of imploding shocks in the CCW approximation. J. Fluid Mech. 114, 41–58 (1982)MATHCrossRef
50.
go back to reference Glass, I.I.: Shock Waves and Man. University of Toronto Institute for Aerospace Studies, Toronto (1974) Glass, I.I.: Shock Waves and Man. University of Toronto Institute for Aerospace Studies, Toronto (1974)
51.
go back to reference Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik 47, 271–306 (1959) Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik 47, 271–306 (1959)
52.
go back to reference Guderley, G.: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt Forsch. 19, 302–312 (1942) Guderley, G.: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt Forsch. 19, 302–312 (1942)
53.
go back to reference Gustafsson, G.: Focusing of weak shock waves in a slightly elliptical cavity. J. Sound Vib. 116(1), 137–148 (1987)MATHCrossRef Gustafsson, G.: Focusing of weak shock waves in a slightly elliptical cavity. J. Sound Vib. 116(1), 137–148 (1987)MATHCrossRef
54.
55.
go back to reference Hamilton, M.F.: Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror. J. Acoust. Soc. Am. 93(3), 1256–1266 (1993)CrossRef Hamilton, M.F.: Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror. J. Acoust. Soc. Am. 93(3), 1256–1266 (1993)CrossRef
56.
go back to reference Henshaw, W.D., Smyth, N.F., Schwendeman, D.W.: Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519–545 (1986)MATHCrossRef Henshaw, W.D., Smyth, N.F., Schwendeman, D.W.: Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519–545 (1986)MATHCrossRef
57.
go back to reference Hikida, S., Needham, C.E.: Low amplitude multiple burst (lamb) model. Tech. rep., S-cubed Final Report, S-CUBED-R-81-5067 (1981) Hikida, S., Needham, C.E.: Low amplitude multiple burst (lamb) model. Tech. rep., S-cubed Final Report, S-CUBED-R-81-5067 (1981)
58.
go back to reference Hornung, H.G., Pullin, D.I., Ponchaut, N.F.: On the question of universality of imploding shock waves. Acta Mech. 201, 31–35 (2008)MATHCrossRef Hornung, H.G., Pullin, D.I., Ponchaut, N.F.: On the question of universality of imploding shock waves. Acta Mech. 201, 31–35 (2008)MATHCrossRef
59.
go back to reference Hosseini, S.H.R., Takayama, K.: Implosion from a spherical shock wave reflected from a spherical wall. J. Fluid Mech. 530, 223–239 (2005)MATHCrossRef Hosseini, S.H.R., Takayama, K.: Implosion from a spherical shock wave reflected from a spherical wall. J. Fluid Mech. 530, 223–239 (2005)MATHCrossRef
60.
go back to reference Johansson, B., Apazidis, N., Lesser M.B.: On shock waves in a confined reflector. Wear 233–235, 79–85 (1999)CrossRef Johansson, B., Apazidis, N., Lesser M.B.: On shock waves in a confined reflector. Wear 233–235, 79–85 (1999)CrossRef
61.
go back to reference Johnsen, E., Colonius, T.: Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124(4), 2011–2020 (2008)CrossRef Johnsen, E., Colonius, T.: Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124(4), 2011–2020 (2008)CrossRef
62.
63.
go back to reference Kandula, M., Freeman, R.: On the interaction and coalescence of spherical blast waves. Shock Waves 18, 21–33 (2008)MATHCrossRef Kandula, M., Freeman, R.: On the interaction and coalescence of spherical blast waves. Shock Waves 18, 21–33 (2008)MATHCrossRef
64.
go back to reference Keefer, J.H., Reisler, R.E.: Simultaneous and non-simultaneous multiple detonations. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, New South Wales, Australia, pp. 543–552 (1984) Keefer, J.H., Reisler, R.E.: Simultaneous and non-simultaneous multiple detonations. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, New South Wales, Australia, pp. 543–552 (1984)
65.
go back to reference Kjellander, M., Tillmark, N., Apazidis, N.: Thermal radiation from a converging shock implosion. Phys. Fluids 22, 046102 (2010)MATHCrossRef Kjellander, M., Tillmark, N., Apazidis, N.: Thermal radiation from a converging shock implosion. Phys. Fluids 22, 046102 (2010)MATHCrossRef
66.
go back to reference Kjellander, M., Tillmark, N., Apazidis, N.: Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects. Phys. Fluids 22, 116102 (2010)MATHCrossRef Kjellander, M., Tillmark, N., Apazidis, N.: Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects. Phys. Fluids 22, 116102 (2010)MATHCrossRef
67.
go back to reference Kjellander, M., Tillmark, N., Apazidis, N.: Experimental determination of self-similarity constant for converging cylindrical shocks. Phys. Fluids 23(11), 116103 (2011)CrossRef Kjellander, M., Tillmark, N., Apazidis, N.: Experimental determination of self-similarity constant for converging cylindrical shocks. Phys. Fluids 23(11), 116103 (2011)CrossRef
68.
go back to reference Kjellander, M., Tillmark, N., Apazidis, N.: Energy concentration by spherical converging shocks generated in a shock tube. Phys. Fluids 24, 126103 (2012)CrossRef Kjellander, M., Tillmark, N., Apazidis, N.: Energy concentration by spherical converging shocks generated in a shock tube. Phys. Fluids 24, 126103 (2012)CrossRef
69.
go back to reference Kleine, H.: Time resolved shadowgraphs of focusing cylindrical shock waves. Study treatise at the Stoßenwellenlabor, RWTH Achen, FRG (1985) Kleine, H.: Time resolved shadowgraphs of focusing cylindrical shock waves. Study treatise at the Stoßenwellenlabor, RWTH Achen, FRG (1985)
70.
go back to reference Knystautas, R., Lee, B., Lee, J.: Diagnostic experiments on converging detonations. Phys. Fluids. Suppl. 1, 165–168 (1969) Knystautas, R., Lee, B., Lee, J.: Diagnostic experiments on converging detonations. Phys. Fluids. Suppl. 1, 165–168 (1969)
71.
go back to reference Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Stability of imploding shocks generated by underwater electrical explosion of cylindrical wire array. Phys. Plasmas 20, 112107 (2013)CrossRef Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Stability of imploding shocks generated by underwater electrical explosion of cylindrical wire array. Phys. Plasmas 20, 112107 (2013)CrossRef
73.
go back to reference Lazarus, R., Richtmyer, R.: Similarity Solutions for Converging Shocks. Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM (1977) Lazarus, R., Richtmyer, R.: Similarity Solutions for Converging Shocks. Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM (1977)
74.
go back to reference Liverts, M., Apazidis, N.: Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett. 116, 014501 (2016) Liverts, M., Apazidis, N.: Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett. 116, 014501 (2016)
75.
go back to reference Matsuo, H., Nakamura, Y.: Experiments on cylindrically converging blast waves. J. Appl. Phys. 51, 3126–3129 (1980) Matsuo, H., Nakamura, Y.: Experiments on cylindrically converging blast waves. J. Appl. Phys. 51, 3126–3129 (1980)
76.
go back to reference Matsuo, H., Nakamura, Y.: Cylindrically converging blast waves in air. J. Appl. Phys. 52, 4503–4507 (1981)CrossRef Matsuo, H., Nakamura, Y.: Cylindrically converging blast waves in air. J. Appl. Phys. 52, 4503–4507 (1981)CrossRef
77.
go back to reference Matsuo, M., Ebihara, K., Ohya, Y.: Spectroscopic study of cylindrically converging shock waves. J. Appl. Phys. 58(7), 2487–2491 (1985)CrossRef Matsuo, M., Ebihara, K., Ohya, Y.: Spectroscopic study of cylindrically converging shock waves. J. Appl. Phys. 58(7), 2487–2491 (1985)CrossRef
78.
go back to reference McMillen, J.H.: Shock wave pressures in water produced by impact of small spheres. Phys. Rev. 68(9,10),198–210 (1945)CrossRef McMillen, J.H.: Shock wave pressures in water produced by impact of small spheres. Phys. Rev. 68(9,10),198–210 (1945)CrossRef
80.
go back to reference Müller, M.: Comparison of Dornier lithotripters: measurement of shock wave fields and fragmentation effectiveness. Biomed. Tech. 35, 250–262 (1990) Müller, M.: Comparison of Dornier lithotripters: measurement of shock wave fields and fragmentation effectiveness. Biomed. Tech. 35, 250–262 (1990)
81.
go back to reference Nakamura, Y.: Analysis of self-similar problems of imploding shock waves by method of characteristics. Phys. Fluids 26, 1234 (1983)MATHCrossRef Nakamura, Y.: Analysis of self-similar problems of imploding shock waves by method of characteristics. Phys. Fluids 26, 1234 (1983)MATHCrossRef
82.
go back to reference Neemeh, R.A., Ahmad, Z.: Stability and collapsing mechanism of strong and weak converging cylindrical shock waves subjected to external perturbation. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, Berkeley, CA, 28 July–2 Aug, pp. 423–430. Stanford University Press, Stanford (1986) Neemeh, R.A., Ahmad, Z.: Stability and collapsing mechanism of strong and weak converging cylindrical shock waves subjected to external perturbation. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, Berkeley, CA, 28 July–2 Aug, pp. 423–430. Stanford University Press, Stanford (1986)
83.
go back to reference Norris, A.N.: Flexural waves on narrow plates. J. Acoust. Soc. Am. 113, 2647–2658 (2003)CrossRef Norris, A.N.: Flexural waves on narrow plates. J. Acoust. Soc. Am. 113, 2647–2658 (2003)CrossRef
84.
go back to reference Perry, R.W., Kantrowitz, A.: The production and stability of converging shock waves. J. Appl. Phys. 22(7), 878–886 (1951)CrossRef Perry, R.W., Kantrowitz, A.: The production and stability of converging shock waves. J. Appl. Phys. 22(7), 878–886 (1951)CrossRef
85.
go back to reference Ponchaut, N., Hornung, H.G., Mouton, D.I.: On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103 (2006)MathSciNetMATHCrossRef Ponchaut, N., Hornung, H.G., Mouton, D.I.: On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103 (2006)MathSciNetMATHCrossRef
86.
go back to reference Qiu, S., Eliasson, V.: Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves. Shock Waves 26(3), 287–297 (2016)CrossRef Qiu, S., Eliasson, V.: Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves. Shock Waves 26(3), 287–297 (2016)CrossRef
87.
go back to reference Qiu, S., Liu, K., Eliasson, V.: Parallel implementation of geometrical shock dynamics for two-dimensional converging shock waves. Comput. Phys. Commun. 207, 186–192 (2016)MATHCrossRef Qiu, S., Liu, K., Eliasson, V.: Parallel implementation of geometrical shock dynamics for two-dimensional converging shock waves. Comput. Phys. Commun. 207, 186–192 (2016)MATHCrossRef
88.
go back to reference Ramsey S.D., Kammb J.R., Bolstad J.H.: The Guderley problem revisited. Int. J. Comput. Fluid Dyn. 26(2), 79–99 (2012)MathSciNetCrossRef Ramsey S.D., Kammb J.R., Bolstad J.H.: The Guderley problem revisited. Int. J. Comput. Fluid Dyn. 26(2), 79–99 (2012)MathSciNetCrossRef
89.
go back to reference Roberts, D.E., Glass, I.I.: Spectroscopic investigation of combustion-driven spherical implosion waves. Phys. Fluids 14, 1662–1670 1971CrossRef Roberts, D.E., Glass, I.I.: Spectroscopic investigation of combustion-driven spherical implosion waves. Phys. Fluids 14, 1662–1670 1971CrossRef
90.
go back to reference Roig, R.A., Glass, I.I.: Spectroscopic study of combustion-driven implosions. Phys. Fluids 20, 1651–1656 (1977)CrossRef Roig, R.A., Glass, I.I.: Spectroscopic study of combustion-driven implosions. Phys. Fluids 20, 1651–1656 (1977)CrossRef
91.
go back to reference Saillard, Y., Barbry, H., Mounier, C.: Transformation of a plane uniform shock into cylindrical or spherical uniform shock by wall shaping. In: Proceedings of the XV-th International Symposium on Shack Tubes and Waves. Stanford University Press, Stanford (1985) Saillard, Y., Barbry, H., Mounier, C.: Transformation of a plane uniform shock into cylindrical or spherical uniform shock by wall shaping. In: Proceedings of the XV-th International Symposium on Shack Tubes and Waves. Stanford University Press, Stanford (1985)
92.
go back to reference Saito, T., Glass, I.: Temperature measurements at an implosion focus. Proc. R. Soc. Lond. A 384, 217–231 (1982)CrossRef Saito, T., Glass, I.: Temperature measurements at an implosion focus. Proc. R. Soc. Lond. A 384, 217–231 (1982)CrossRef
93.
go back to reference Sankin, G.N., Zhou, Y., Zhong, P.: Focusing of shock waves induced by optical breakdown in water. J. Acoust. Soc. Am. 123(6), 4071–4081 (2008)CrossRef Sankin, G.N., Zhou, Y., Zhong, P.: Focusing of shock waves induced by optical breakdown in water. J. Acoust. Soc. Am. 123(6), 4071–4081 (2008)CrossRef
96.
go back to reference Sembian, S., Liverts, M., Tillmark, N., Apazidis, N.: Plane shock wave interaction with a cylindrical column. Phys. Fluids 28, 056102 (2016) Sembian, S., Liverts, M., Tillmark, N., Apazidis, N.: Plane shock wave interaction with a cylindrical column. Phys. Fluids 28, 056102 (2016)
97.
go back to reference Sommerfeld, M., Müller, H.M.: Experimental and numerical studies of shock wave focusing in water. Exp. Fluids 6, 209–216 (1988)CrossRef Sommerfeld, M., Müller, H.M.: Experimental and numerical studies of shock wave focusing in water. Exp. Fluids 6, 209–216 (1988)CrossRef
98.
go back to reference Stan, C.A., Willmont, P.R., Stone, H.A., Koglin, J.E., Mengling, L., Aquila, A.L., Robinson, J.S., Gumerlock, K.L., Blaj, G., Sierra, R.G., Boulet, S., Guillet, S.A.H., Curtis, R.H., Vetter, S.L., Loos, H., Turner, J.L., Decker, F.-J.: Negative pressures and spallation in water drops subjected to nanosecond shock waves. Phys. Chem. Lett. 7, 2055–2062 (2016)CrossRef Stan, C.A., Willmont, P.R., Stone, H.A., Koglin, J.E., Mengling, L., Aquila, A.L., Robinson, J.S., Gumerlock, K.L., Blaj, G., Sierra, R.G., Boulet, S., Guillet, S.A.H., Curtis, R.H., Vetter, S.L., Loos, H., Turner, J.L., Decker, F.-J.: Negative pressures and spallation in water drops subjected to nanosecond shock waves. Phys. Chem. Lett. 7, 2055–2062 (2016)CrossRef
99.
go back to reference Stanyukovich, K.: Unsteady Motion of Continuous Media. Pergamon, Oxford (1960)CrossRef Stanyukovich, K.: Unsteady Motion of Continuous Media. Pergamon, Oxford (1960)CrossRef
100.
go back to reference Stanyukovich, K.P.: Unsteady Motion of Continuous Media. Pergamon Press, Oxford (1960)CrossRef Stanyukovich, K.P.: Unsteady Motion of Continuous Media. Pergamon Press, Oxford (1960)CrossRef
101.
go back to reference Starkenberg, J.K., Benjamin, K.J.: Predicting coalescence of blast waves from sequentially exploding ammunition stacks. Tech. rep., Army Research Lab Report ARL-TR-645 (1994) Starkenberg, J.K., Benjamin, K.J.: Predicting coalescence of blast waves from sequentially exploding ammunition stacks. Tech. rep., Army Research Lab Report ARL-TR-645 (1994)
102.
go back to reference Sturtevant, B., Kulkarny, V.A.: The focusing of weak shock waves. J. Fluid Mech. 73(04), 651–671 (1976)CrossRef Sturtevant, B., Kulkarny, V.A.: The focusing of weak shock waves. J. Fluid Mech. 73(04), 651–671 (1976)CrossRef
103.
go back to reference Sun, M., Takayama, K.: An artificially upstream flux vector splitting scheme for the Euler equations. J. Comput. Phys. 189(1), 305–329 (2003)MathSciNetMATHCrossRef Sun, M., Takayama, K.: An artificially upstream flux vector splitting scheme for the Euler equations. J. Comput. Phys. 189(1), 305–329 (2003)MathSciNetMATHCrossRef
104.
go back to reference Takayama, K., Onodera, O., Hoshizawa, Y.: Experiments on the Stability of Converging Cylindrical Shock Waves. Shock Waves Marseille IV, pp. 117–127. Springer, Berlin (1984) Takayama, K., Onodera, O., Hoshizawa, Y.: Experiments on the Stability of Converging Cylindrical Shock Waves. Shock Waves Marseille IV, pp. 117–127. Springer, Berlin (1984)
105.
go back to reference Takayama, K., Kleine, H., Grönig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987) Takayama, K., Kleine, H., Grönig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987)
106.
go back to reference Taylor, G.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A Math. Phys. Sci. 201, 159–174 (1950)MATHCrossRef Taylor, G.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A Math. Phys. Sci. 201, 159–174 (1950)MATHCrossRef
107.
go back to reference Trevena, D.H.: Cavitation an generation tension in liquid. J. Phys. D: Appl. Phys. 17, 2139–2164 (1984)CrossRef Trevena, D.H.: Cavitation an generation tension in liquid. J. Phys. D: Appl. Phys. 17, 2139–2164 (1984)CrossRef
108.
109.
go back to reference Wan, Q., Eliasson, V.: Numerical study of shock wave attenuation in two-dimensional ducts using solid obstacles – How to utilize shock focusing techniques to attenuate shock waves. Aerospace 2, 203–221 (2015)CrossRef Wan, Q., Eliasson, V.: Numerical study of shock wave attenuation in two-dimensional ducts using solid obstacles – How to utilize shock focusing techniques to attenuate shock waves. Aerospace 2, 203–221 (2015)CrossRef
110.
go back to reference Wang, C., Eliasson, V.: Shock wave focusing in water inside convergent structures. Int. J. Multiphys. 6, 267–282 (2012)CrossRef Wang, C., Eliasson, V.: Shock wave focusing in water inside convergent structures. Int. J. Multiphys. 6, 267–282 (2012)CrossRef
113.
go back to reference Wang, C., Grunenfelder, L., Patwardhan, R., Qiu, S., Eliasson, V.: Investigation of shock wave focusing in water in a logarithmic spiral duct, part 2: strong coupling. Ocean Eng. 102, 185–196 (2015)CrossRef Wang, C., Grunenfelder, L., Patwardhan, R., Qiu, S., Eliasson, V.: Investigation of shock wave focusing in water in a logarithmic spiral duct, part 2: strong coupling. Ocean Eng. 102, 185–196 (2015)CrossRef
114.
go back to reference Watanabe, M., Takayama, K.: Stability of converging cylindrical shock waves. Shock Waves 1, 149–160 (1991)CrossRef Watanabe, M., Takayama, K.: Stability of converging cylindrical shock waves. Shock Waves 1, 149–160 (1991)CrossRef
115.
go back to reference Watanabe, M., Onodera, O., Takayama, K.: Shock wave focusing in a vertical annular shock tube. Theor. Appl. Mech. 32, 99–104 (1995) Watanabe, M., Onodera, O., Takayama, K.: Shock wave focusing in a vertical annular shock tube. Theor. Appl. Mech. 32, 99–104 (1995)
116.
117.
118.
119.
go back to reference Whitham, G.B.: A note on shock dynamics relative to a moving frame. J. Fluid Mech. 31, 449–453 (1968)MATHCrossRef Whitham, G.B.: A note on shock dynamics relative to a moving frame. J. Fluid Mech. 31, 449–453 (1968)MATHCrossRef
120.
go back to reference Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974)MATH Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974)MATH
121.
go back to reference Wilson, D.A., Hoyt, J.W., McKune, J.W.: Measurement of tensile strength of liquids by an explosion technique. Nature 253, 723–725 (1975)CrossRef Wilson, D.A., Hoyt, J.W., McKune, J.W.: Measurement of tensile strength of liquids by an explosion technique. Nature 253, 723–725 (1975)CrossRef
122.
go back to reference Wu, J., Neemeh, R., Ostrowski, P.: Experiments on the stability of converging cylindrical shock waves. AIAA J. 19, 257–258 (1981)CrossRef Wu, J., Neemeh, R., Ostrowski, P.: Experiments on the stability of converging cylindrical shock waves. AIAA J. 19, 257–258 (1981)CrossRef
123.
go back to reference Zel’dovich, Y.B., Raizer, Y.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publications, New York (1966) Zel’dovich, Y.B., Raizer, Y.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publications, New York (1966)
124.
go back to reference Zhai, Z., Liu, C., Qin, F., Yang, J., Luo, X.: Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701 (2010)MATHCrossRef Zhai, Z., Liu, C., Qin, F., Yang, J., Luo, X.: Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701 (2010)MATHCrossRef
125.
go back to reference Zheng, Q., Durben, D.J., Wolf, G.H., Angel, C.A.: Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254, 829–832 (1991)CrossRef Zheng, Q., Durben, D.J., Wolf, G.H., Angel, C.A.: Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254, 829–832 (1991)CrossRef
Metadata
Title
Converging Shocks
Authors
Nicholas Apazidis
Veronica Eliasson
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-75866-4_3

Premium Partners