Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 11/2019

20-06-2019 | Research Article - Computer Engineering and Computer Science

Cooling Computer Chips with Cascaded and Non-cascaded Thermoelectric Devices

Author: Saleh A. Al-Shehri

Published in: Arabian Journal for Science and Engineering | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermoelectric devices are currently being used in cooling and generating electricity applications. This study mainly focuses on using thermoelectric devices for both applications towards cooling down computer chips; especially, that the very large scale integration technology has reached high advancement where more than 100 million transistors can be fabricated in 1 mm2. Reducing the non-uniformity of the chip temperature is important so as to decrease the induced thermal stress in this chip and consequently reduce its failure rate. To simultaneously reduce both the non-uniformity of the temperature distribution in the chip and the power requirements for the cooling system, thermoelectric generators can be installed on the cooler chip areas to harvest electrical power from the chip wasted heat. Thereafter, the chip hotspot areas are cooled down using thermoelectric coolers that are powered by the harvested electrical power from the thermoelectric generators in order to maintain the temperatures of these hotspots to be less than or equal a certain temperature threshold. Because no additional electrical power requirement is needed to cool down the hotspots, this cooling technique is called in this paper as “sustainable self-cooling framework for cooling chip hotspots”. However, the question is that can the harvested electrical power by the thermoelectric generators be enough to power the thermoelectric coolers for different computer chips at a given operating condition? As such, one of the objectives of this paper is to develop a three-dimensional numerical and optimization model to predict the thermal and electrical performance of cascaded and non-cascaded thermoelectric generators and cascaded and non-cascaded thermoelectric coolers for cooling chip applications. Then, validate the developed model against experimental data. The results showed that the predictions of the developed model were in good agreement with the experimental to within ± 4%. After gaining confidence in the developed model, it was used for a given chip operating condition to conduct a case study for a sustainable self-cooling framework in order to answer the raised question above. The results showed that the self-cooling framework can successfully cool down the hotspot at an acceptable temperature with not only no need for additional electrical power requirements but also for reducing the non-uniformity in the chip temperature distribution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Carlson, T.; Heirman, T.; Eeckhout, L.: Sniper: exploring the level of abstraction for scalable and accurate parallel multi-core simulation. In: Conference on High Performance Computing Networking, Storage and Analysis (Supercomputing—SC), Number 52 (2011) Carlson, T.; Heirman, T.; Eeckhout, L.: Sniper: exploring the level of abstraction for scalable and accurate parallel multi-core simulation. In: Conference on High Performance Computing Networking, Storage and Analysis (Supercomputing—SC), Number 52 (2011)
2.
go back to reference Jejurikar, R.; Pereira, C.; Gupta, R.: Leakage aware dynamic voltage scaling for real-time embedded systems. In: The 41st Annual Design Automation Conference, San Diego, CA, USA, June 7–11, (2004) Jejurikar, R.; Pereira, C.; Gupta, R.: Leakage aware dynamic voltage scaling for real-time embedded systems. In: The 41st Annual Design Automation Conference, San Diego, CA, USA, June 7–11, (2004)
3.
go back to reference Skadron, K.; Sankaranarayanan, K.; Velusamy, S.; Tarjan, D.; Stan, M.; Huang, W.: Temperature-aware microarchitecture: modeling and implementation. ACM Trans. Archit. Code Optim. 1(1), 94–125 (2004)CrossRef Skadron, K.; Sankaranarayanan, K.; Velusamy, S.; Tarjan, D.; Stan, M.; Huang, W.: Temperature-aware microarchitecture: modeling and implementation. ACM Trans. Archit. Code Optim. 1(1), 94–125 (2004)CrossRef
4.
go back to reference Lee, S.; Pandiyan, D.; Seo J.-S.; Wu, C.-J.: Thermoelectric-based sustainable self-cooling for fine-grained processor hot spots. In: 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 31 May–3 June (2016) Lee, S.; Pandiyan, D.; Seo J.-S.; Wu, C.-J.: Thermoelectric-based sustainable self-cooling for fine-grained processor hot spots. In: 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 31 May–3 June (2016)
5.
go back to reference Jayakumar S.; Reda, S.: Making sense of thermoelectrics for processor thermal management and energy harvesting. In: IEEE/ACM International Symposium on Low Power Electronics and Design, Rome, Italy, 22–24 July (2015) Jayakumar S.; Reda, S.: Making sense of thermoelectrics for processor thermal management and energy harvesting. In: IEEE/ACM International Symposium on Low Power Electronics and Design, Rome, Italy, 22–24 July (2015)
6.
go back to reference Castilhos, G.; Mandelli, M.; Ost, L.; Moraes, F.: Hierarchical energy monitoring for task mapping in many-core systems. J. Syst. Archit. 63, 80–92 (2016)CrossRef Castilhos, G.; Mandelli, M.; Ost, L.; Moraes, F.: Hierarchical energy monitoring for task mapping in many-core systems. J. Syst. Archit. 63, 80–92 (2016)CrossRef
8.
go back to reference Snyder, G.J.; Soto, M.; Alley, R.; Koester, D.; Conner, B.: Hot spot cooling using embedded thermoelectric coolers. In: Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Dallas, TX, USA (2006) Snyder, G.J.; Soto, M.; Alley, R.; Koester, D.; Conner, B.: Hot spot cooling using embedded thermoelectric coolers. In: Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Dallas, TX, USA (2006)
9.
go back to reference Redmond, M.; Manickaraj, K.; Sullivan, O.; Kumar, S.: Hotspot cooling in stacked chips using thermoelectric coolers. IEEE Trans. Compon. Packag. Manuf. Technol. 3(5), 759–767 (2013)CrossRef Redmond, M.; Manickaraj, K.; Sullivan, O.; Kumar, S.: Hotspot cooling in stacked chips using thermoelectric coolers. IEEE Trans. Compon. Packag. Manuf. Technol. 3(5), 759–767 (2013)CrossRef
10.
go back to reference El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Efficient spreaders for cooling high power computer chips. J. Appl. Therm. Eng. 27, 1072–1088 (2007)CrossRef El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Efficient spreaders for cooling high power computer chips. J. Appl. Therm. Eng. 27, 1072–1088 (2007)CrossRef
11.
go back to reference El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Thermal analyses of composite copper/porous graphite spreaders for immersion cooling applications. In: ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005, Proceedings of InterPACK ‘05, Part A, San Francisco, CA, pp. 305–314 (2005) El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Thermal analyses of composite copper/porous graphite spreaders for immersion cooling applications. In: ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005, Proceedings of InterPACK ‘05, Part A, San Francisco, CA, pp. 305–314 (2005)
12.
go back to reference Gupta, M.P.; Sayer, M.S.; Mukhopadhyay, S.; Kumar, S.: Ultrathin thermoelectric devices for on-chip peltier cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 1(9), 1395–1405 (2011)CrossRef Gupta, M.P.; Sayer, M.S.; Mukhopadhyay, S.; Kumar, S.: Ultrathin thermoelectric devices for on-chip peltier cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 1(9), 1395–1405 (2011)CrossRef
13.
go back to reference Sullivan, O.; Gupta, M.P.; Mukhhyopadhyay, S.; Kumar, S.: Array of thermoelectric coolers for on-chip thermal management. J. Electron. Packag. 134, 1–8 (2012)CrossRef Sullivan, O.; Gupta, M.P.; Mukhhyopadhyay, S.; Kumar, S.: Array of thermoelectric coolers for on-chip thermal management. J. Electron. Packag. 134, 1–8 (2012)CrossRef
15.
go back to reference Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4(4), 235–238 (2009)CrossRef Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4(4), 235–238 (2009)CrossRef
16.
go back to reference Saber, H.H.; El-Genk, M.S.: Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy Convers. Manag. 48(4), 1383–1400 (2007)CrossRef Saber, H.H.; El-Genk, M.S.: Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy Convers. Manag. 48(4), 1383–1400 (2007)CrossRef
17.
go back to reference Saber, H.H.; El-Genk, M.S.; Caillat, T.: Tests results of skutterudite based thermoelectric unicouples. Energy Convers. Manag. 48(2), 555–567 (2007)CrossRef Saber, H.H.; El-Genk, M.S.; Caillat, T.: Tests results of skutterudite based thermoelectric unicouples. Energy Convers. Manag. 48(2), 555–567 (2007)CrossRef
18.
go back to reference Saber, H.H.; El-Genk, M.S.: Thermal and performance analyses of efficient radioisotope power systems. Energy Convers. Manag. 47(15–16), 2290–2307 (2006) Saber, H.H.; El-Genk, M.S.: Thermal and performance analyses of efficient radioisotope power systems. Energy Convers. Manag. 47(15–16), 2290–2307 (2006)
19.
go back to reference Saber, H.H.; El-Genk, M.S.; Caillat, T.; Sakamoto, J.: Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manag. 47(2), 174–200 (2006)CrossRef Saber, H.H.; El-Genk, M.S.; Caillat, T.; Sakamoto, J.: Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manag. 47(2), 174–200 (2006)CrossRef
20.
go back to reference El-Genk, M.S.; Saber, H.H.: Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems. Energy Convers. Manag. 46(7–8), 1083–1105 (2005)CrossRef El-Genk, M.S.; Saber, H.H.: Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems. Energy Convers. Manag. 46(7–8), 1083–1105 (2005)CrossRef
21.
go back to reference El-Genk, M.S.; Saber, H.H.; Caillat, T.: Efficient segmented thermoelectric for space power applications. Energy Convers. Manag. 44(11), 1755–1772 (2003)CrossRef El-Genk, M.S.; Saber, H.H.; Caillat, T.: Efficient segmented thermoelectric for space power applications. Energy Convers. Manag. 44(11), 1755–1772 (2003)CrossRef
22.
go back to reference El-Genk, M.S.; Saber, H.H.: High efficiency segmented thermoelectric for operation between 973 K and 300 K. Energy Convers. Manag. 44(7), 1069–2003 (2003)CrossRef El-Genk, M.S.; Saber, H.H.: High efficiency segmented thermoelectric for operation between 973 K and 300 K. Energy Convers. Manag. 44(7), 1069–2003 (2003)CrossRef
23.
go back to reference El-Genk, M.S.; Saber, H.H.: Parametric and optimization analyses of cascaded thermoelectric-advanced radioisotope power systems with 4-GPH bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 55, pp. 55-1–55-13. CRC Press, Taylor & Francis Group. ISBN 0-8493-2264-2 (2006) El-Genk, M.S.; Saber, H.H.: Parametric and optimization analyses of cascaded thermoelectric-advanced radioisotope power systems with 4-GPH bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 55, pp. 55-1–55-13. CRC Press, Taylor & Francis Group. ISBN 0-8493-2264-2 (2006)
24.
go back to reference El-Genk, M.S.; Saber, H.H.: Performance and mass estimates of cascaded thermoelectric modules—advanced radioisotope power systems (CTM-ARPSs) with 4-GPHS bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 54, pp. 54-1–54-14. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006) El-Genk, M.S.; Saber, H.H.: Performance and mass estimates of cascaded thermoelectric modules—advanced radioisotope power systems (CTM-ARPSs) with 4-GPHS bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 54, pp. 54-1–54-14. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006)
25.
go back to reference El-Genk, M.S.; Saber, H.H.: Modeling and optimization of segmented thermoelectric generators for terrestrial and space applications. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 43, pp. 43-1–43-13. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006) El-Genk, M.S.; Saber, H.H.: Modeling and optimization of segmented thermoelectric generators for terrestrial and space applications. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 43, pp. 43-1–43-13. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006)
26.
go back to reference Rajpoot, S.C.; Mishra, G.; Manser, R.S.; Sahu, U.; Rajput, S.S.: Analysis of power generation from exhaust gas on 4 stroke 4 cylinder petrol engine using thermoelectric generator. GRD J. Glob. Res. Dev. J. Eng. 2(7), 97–108 (2017) Rajpoot, S.C.; Mishra, G.; Manser, R.S.; Sahu, U.; Rajput, S.S.: Analysis of power generation from exhaust gas on 4 stroke 4 cylinder petrol engine using thermoelectric generator. GRD J. Glob. Res. Dev. J. Eng. 2(7), 97–108 (2017)
29.
go back to reference Thepmanee, T.; Julsereewong P.; Taratanaphol, N.: Waste-heat thermoelectric power source for industrial wireless transmitters. In: IEEE Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Chiang Mai, Thailand (2010) Thepmanee, T.; Julsereewong P.; Taratanaphol, N.: Waste-heat thermoelectric power source for industrial wireless transmitters. In: IEEE Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Chiang Mai, Thailand (2010)
30.
go back to reference Carlson, E.; Strunz, K.; Otis, B.: A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid State Circuits 45(4), 741–750 (2010)CrossRef Carlson, E.; Strunz, K.; Otis, B.: A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid State Circuits 45(4), 741–750 (2010)CrossRef
31.
go back to reference Ramadass, Y.; Chandrakasan, A.: A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid State Circuits 46(1), 333–341 (2010)CrossRef Ramadass, Y.; Chandrakasan, A.: A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid State Circuits 46(1), 333–341 (2010)CrossRef
32.
go back to reference ITRS, International Technology Roadmap for Semiconductors (2004) ITRS, International Technology Roadmap for Semiconductors (2004)
33.
go back to reference Knickerbocker, J.U.; Pompeo, F.L.; Tai, A.F.; et al.: An advanced multichip module (MCM) for high-performance UNIX servers. IBM J. Res. Dev. 46(6), 779–804 (2002)CrossRef Knickerbocker, J.U.; Pompeo, F.L.; Tai, A.F.; et al.: An advanced multichip module (MCM) for high-performance UNIX servers. IBM J. Res. Dev. 46(6), 779–804 (2002)CrossRef
34.
go back to reference Knickerbocker, J.U.; Andry, P.S.; Dang, B.; et al.: Three-dimensional silicon integration. IBM J. Res. Dev. 52(6), 553–569 (2008)CrossRef Knickerbocker, J.U.; Andry, P.S.; Dang, B.; et al.: Three-dimensional silicon integration. IBM J. Res. Dev. 52(6), 553–569 (2008)CrossRef
36.
go back to reference Chin-Hsiang Cheng, C.-H.; Huang, S.-Y.; Cheng, T.-C.: A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int. J. Heat Mass Transf. 53, 2001–2011 (2010)CrossRefMATH Chin-Hsiang Cheng, C.-H.; Huang, S.-Y.; Cheng, T.-C.: A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int. J. Heat Mass Transf. 53, 2001–2011 (2010)CrossRefMATH
37.
go back to reference Li, W.; Paul, M.C.; Siviter, J.; Montecucco, A.; Knox, A.R.; Sweet, T.; Min, G.; Baig, H.; Mallick, T.K.; Han, G.; Gregory, D.H.; Azough, F.; Freer, R.: Thermal performance of two heat exchangers for thermoelectric generators. Case Stud. Therm. Eng. 8, 164–175 (2016)CrossRef Li, W.; Paul, M.C.; Siviter, J.; Montecucco, A.; Knox, A.R.; Sweet, T.; Min, G.; Baig, H.; Mallick, T.K.; Han, G.; Gregory, D.H.; Azough, F.; Freer, R.: Thermal performance of two heat exchangers for thermoelectric generators. Case Stud. Therm. Eng. 8, 164–175 (2016)CrossRef
38.
go back to reference LaClair, T.J.; Mudawar, I.: Thermal transients in a capillary evaporator prior to the initiation of boiling. Int. J. Heat Mass Transf. 43, 3937–3952 (2000)CrossRefMATH LaClair, T.J.; Mudawar, I.: Thermal transients in a capillary evaporator prior to the initiation of boiling. Int. J. Heat Mass Transf. 43, 3937–3952 (2000)CrossRefMATH
39.
go back to reference Li, S.; Ahn, J.; Strong, R.; Brockman, J.; Tullsen, D.; Jouppi, N.: McPAT: an integrated power, area, and timing modeling framework for multicore and manycore architectures. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, Dec 12–16, 2009, New York, NY (2009) Li, S.; Ahn, J.; Strong, R.; Brockman, J.; Tullsen, D.; Jouppi, N.: McPAT: an integrated power, area, and timing modeling framework for multicore and manycore architectures. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, Dec 12–16, 2009, New York, NY (2009)
Metadata
Title
Cooling Computer Chips with Cascaded and Non-cascaded Thermoelectric Devices
Author
Saleh A. Al-Shehri
Publication date
20-06-2019
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 11/2019
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-03862-2

Other articles of this Issue 11/2019

Arabian Journal for Science and Engineering 11/2019 Go to the issue

Research Article - Computer Engineering and Computer Science

Multi-criteria-Based Energy-Efficient Framework for VM Placement in Cloud Data Centers

Research Article - Computer Engineering and Computer Science

Computing Dynamic Slices of Concurrent Feature-Oriented Programs

Premium Partners