Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2017

13-04-2017

Copper Corrosion Under Non-uniform Magnetic Field in 0.5 M Hydrochloric Acid

Authors: E. Garcia-Ochoa, F. Corvo, J. Genesca, V. Sosa, P. Estupiñán

Published in: Journal of Materials Engineering and Performance | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of a magnetic field on the electrochemical reactions taking place at the surface of a copper electrode immersed in a 0.5 M HCl solution at room temperature has been studied. The symmetry axis of the magnetic field was lined up in the same direction of the ion flow to minimize the Lorentz forces. Measurements of potentiodynamic polarization curves, electrochemical impedance spectroscopy and electrochemical noise allow concluding that the magnetic field significantly affects the cathodic reactions, with corrosion rates increasing under the presence of oxygen in acid media and decreasing when oxygen is eliminated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Hinds, J.M. Coey, and M.E.G. Lyons, Influence of Magnetic Forces on Electrochemical Mass Transport, Electrochem. Commun., 2001, 3, p 215–218CrossRef G. Hinds, J.M. Coey, and M.E.G. Lyons, Influence of Magnetic Forces on Electrochemical Mass Transport, Electrochem. Commun., 2001, 3, p 215–218CrossRef
2.
go back to reference T.Z. Fahidy, Magnetoelectrolysis, J. Appl. Electrochem., 1983, 13, p 553–563CrossRef T.Z. Fahidy, Magnetoelectrolysis, J. Appl. Electrochem., 1983, 13, p 553–563CrossRef
3.
go back to reference R.A. Tacken and L.J. Janssen, Applications of Magnetroelectrolysis, J. Appl. Electrochem., 1995, 25, p 1–5CrossRef R.A. Tacken and L.J. Janssen, Applications of Magnetroelectrolysis, J. Appl. Electrochem., 1995, 25, p 1–5CrossRef
4.
go back to reference O. Aaboubi, J.P. Chopart, J. Douglade, A. Olivier, C. Gabrielli, and B. Tribollet, Magnetic Field Effects on Mass Transport, J. Electrochem. Soc., 1990, 137(6), p 1796–1804CrossRef O. Aaboubi, J.P. Chopart, J. Douglade, A. Olivier, C. Gabrielli, and B. Tribollet, Magnetic Field Effects on Mass Transport, J. Electrochem. Soc., 1990, 137(6), p 1796–1804CrossRef
5.
go back to reference J. Hu, C. Dong, X. Li, and K. Xiao, Effects of Applied Magnetic Field on Corrosion of Beryllium Copper in NaCl Solution, J. Mater. Sci. Technol., 2010, 26(4), p 355–361CrossRef J. Hu, C. Dong, X. Li, and K. Xiao, Effects of Applied Magnetic Field on Corrosion of Beryllium Copper in NaCl Solution, J. Mater. Sci. Technol., 2010, 26(4), p 355–361CrossRef
6.
go back to reference D.T. Kountouras, C.A. Vogiatzis, A. Tsouknidas, and S. Skolianos, Preventing or Accelerating Galvanic Corrosion Through the Application of a Proper External Magnetic Field, Corros. Eng. Sci. Technol., 2014, 49(7), p 603–607CrossRef D.T. Kountouras, C.A. Vogiatzis, A. Tsouknidas, and S. Skolianos, Preventing or Accelerating Galvanic Corrosion Through the Application of a Proper External Magnetic Field, Corros. Eng. Sci. Technol., 2014, 49(7), p 603–607CrossRef
7.
go back to reference O. Devos, O. Aaboubi, J.-P. Chopart, A. Olivier, C. Gabrielli, and B. Tribollet, Is There Magnetic Field Effect on Electrochemical Kinetics?, J. Phys. Chem. A, 2000, 104, p 1544–1548CrossRef O. Devos, O. Aaboubi, J.-P. Chopart, A. Olivier, C. Gabrielli, and B. Tribollet, Is There Magnetic Field Effect on Electrochemical Kinetics?, J. Phys. Chem. A, 2000, 104, p 1544–1548CrossRef
8.
go back to reference C.-C. Lee and T.-C. Chou, Effects of Magnetic Field on the Reaction Kinetics of Electroless Nickel Deposition, Electrochim. Acta, 1995, 40, p 965–970CrossRef C.-C. Lee and T.-C. Chou, Effects of Magnetic Field on the Reaction Kinetics of Electroless Nickel Deposition, Electrochim. Acta, 1995, 40, p 965–970CrossRef
9.
go back to reference J.C. Shannon, Z.H. Gu, and T.Z. Fahidy, Surface Morphology of Cathodic Nickel Deposits Produced via Magnetoelectrolysis, J. Electrochem. Soc., 1997, 144, p L314–L316CrossRef J.C. Shannon, Z.H. Gu, and T.Z. Fahidy, Surface Morphology of Cathodic Nickel Deposits Produced via Magnetoelectrolysis, J. Electrochem. Soc., 1997, 144, p L314–L316CrossRef
10.
go back to reference I. Mogi and M. Kamiko, Striking Effects of Magnetic Field on the Growth Morphology of Electrochemical Deposits, J. Cryst. Growth, 1996, 166, p 276–280CrossRef I. Mogi and M. Kamiko, Striking Effects of Magnetic Field on the Growth Morphology of Electrochemical Deposits, J. Cryst. Growth, 1996, 166, p 276–280CrossRef
11.
go back to reference O. Devos, A. Olivier, J.-P. Chopart, O. Aaboubi, and G. Maurin, Magnetic Field Effects on Nickel Electrodeposition, J. Electrochem. Soc., 1998, 145, p 401–405CrossRef O. Devos, A. Olivier, J.-P. Chopart, O. Aaboubi, and G. Maurin, Magnetic Field Effects on Nickel Electrodeposition, J. Electrochem. Soc., 1998, 145, p 401–405CrossRef
12.
go back to reference W.D. Bjorndahl and K. Nobe, Copper Corrosion in Chloride Media, Effect of Oxygen, Corrosion, 1984, 40, p 82–87CrossRef W.D. Bjorndahl and K. Nobe, Copper Corrosion in Chloride Media, Effect of Oxygen, Corrosion, 1984, 40, p 82–87CrossRef
13.
go back to reference G. Kear, B.D. Barker, and F.C. Walsh, Electrochemical Corrosion of Unalloyed Copper in Chloride Media—A Critical Review, Corros. Sci., 2004, 46, p 109–135CrossRef G. Kear, B.D. Barker, and F.C. Walsh, Electrochemical Corrosion of Unalloyed Copper in Chloride Media—A Critical Review, Corros. Sci., 2004, 46, p 109–135CrossRef
14.
go back to reference F.K. Crundwell, The Anodic Dissolution of Copper in Hydrochloric Acid Solutions, Electrochim. Acta, 1992, 37, p 2707–2714CrossRef F.K. Crundwell, The Anodic Dissolution of Copper in Hydrochloric Acid Solutions, Electrochim. Acta, 1992, 37, p 2707–2714CrossRef
15.
go back to reference E.J. Kelly, Magnetic Field Effects on Electrochemical Reactions Occurring at Metal/Flowing-Electrolyte Interfaces, J. Electrochem. Soc., 1977, 124, p 987–994CrossRef E.J. Kelly, Magnetic Field Effects on Electrochemical Reactions Occurring at Metal/Flowing-Electrolyte Interfaces, J. Electrochem. Soc., 1977, 124, p 987–994CrossRef
16.
go back to reference Z. Lu, C. Huang, D. Huang, and W. Yang, Effects of a Magnetic Field on the Anodic Dissolution, Passivation and Transpassivation Behaviour of Iron in Weakly Alkaline Solutions with or without Halides, Corros. Sci., 2006, 48, p 3049–3077CrossRef Z. Lu, C. Huang, D. Huang, and W. Yang, Effects of a Magnetic Field on the Anodic Dissolution, Passivation and Transpassivation Behaviour of Iron in Weakly Alkaline Solutions with or without Halides, Corros. Sci., 2006, 48, p 3049–3077CrossRef
17.
go back to reference G. Hinds, J.M.D. Coey, and M.E.G. Lyons, Influence of Magnetic Forces on Electrochemical Mass Transport, Electrochem. Commun., 2001, 3, p 215–218CrossRef G. Hinds, J.M.D. Coey, and M.E.G. Lyons, Influence of Magnetic Forces on Electrochemical Mass Transport, Electrochem. Commun., 2001, 3, p 215–218CrossRef
18.
go back to reference A. Ručinskienė, G. Bikučius, L. Gudavičiūtė, and E. Juzeliūnas, Magnetic Field Effect on Stainless Steel Corrosion in FeCl3 Solution, Electrochem. Commun., 2002, 4, p 86–91CrossRef A. Ručinskienė, G. Bikučius, L. Gudavičiūtė, and E. Juzeliūnas, Magnetic Field Effect on Stainless Steel Corrosion in FeCl3 Solution, Electrochem. Commun., 2002, 4, p 86–91CrossRef
19.
go back to reference A. Chiba, K. Kawazu, O. Nakano, T. Tamura, S. Yoshihara, and E. Sato, The Effects of Magnetic Fields on the Corrosion of Aluminum Foil in Sodium Chloride Solutions, Corros. Sci., 1994, 36, p 539–543CrossRef A. Chiba, K. Kawazu, O. Nakano, T. Tamura, S. Yoshihara, and E. Sato, The Effects of Magnetic Fields on the Corrosion of Aluminum Foil in Sodium Chloride Solutions, Corros. Sci., 1994, 36, p 539–543CrossRef
20.
go back to reference P. Eckmann, S.O. Kamphost, and D. Ruelle, Recurrence Plot of Dynamical Systems, Europhys. Lett., 1987, 4, p 973–977CrossRef P. Eckmann, S.O. Kamphost, and D. Ruelle, Recurrence Plot of Dynamical Systems, Europhys. Lett., 1987, 4, p 973–977CrossRef
21.
go back to reference J.P. Zbilut and C.L. Webber, Embedding and Delays as Derived from Quantification of Recurrence Plot, Phys. Lett. A, 1992, 171, p 199–203CrossRef J.P. Zbilut and C.L. Webber, Embedding and Delays as Derived from Quantification of Recurrence Plot, Phys. Lett. A, 1992, 171, p 199–203CrossRef
22.
go back to reference G. McGuire, N.B. Azar, and M. Shelhamer, Recurrence Matrices and the Preservation of Dynamical Properties, Phys. Lett. A, 1997, 237, p 43–47CrossRef G. McGuire, N.B. Azar, and M. Shelhamer, Recurrence Matrices and the Preservation of Dynamical Properties, Phys. Lett. A, 1997, 237, p 43–47CrossRef
23.
go back to reference G. McGuire, N.B. Azar, and M. Shelhamer, Recurrence Matrices and the Preservation of Dynamical Properties, Phys. Lett. A, 1997, 237, p 43–47CrossRef G. McGuire, N.B. Azar, and M. Shelhamer, Recurrence Matrices and the Preservation of Dynamical Properties, Phys. Lett. A, 1997, 237, p 43–47CrossRef
24.
go back to reference C.L. Webber, Jr., and J.P. Zbilut, Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies, J. Appl. Physiol., 1994, 76, p 965–973 C.L. Webber, Jr., and J.P. Zbilut, Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies, J. Appl. Physiol., 1994, 76, p 965–973
25.
go back to reference L.L. Trulla, A. Giuliani, J.P. Zbilut, and C.L. Webber, Jr., Recurrence Quantification Analysis of the Logistic Equation with Transients, Phys. Lett. A, 1996, 223, p 255–260CrossRef L.L. Trulla, A. Giuliani, J.P. Zbilut, and C.L. Webber, Jr., Recurrence Quantification Analysis of the Logistic Equation with Transients, Phys. Lett. A, 1996, 223, p 255–260CrossRef
26.
go back to reference C. Morana, S. Ramdani, S. Perrey, and A. Varray, Recurrence Quantification Analysis of Surface Electromyographic Signal: Sensitivity to Potentiation and Neuromuscular Fatigue, J. Neurosci. Methods, 2009, 177, p 73–79CrossRef C. Morana, S. Ramdani, S. Perrey, and A. Varray, Recurrence Quantification Analysis of Surface Electromyographic Signal: Sensitivity to Potentiation and Neuromuscular Fatigue, J. Neurosci. Methods, 2009, 177, p 73–79CrossRef
27.
go back to reference F. Censi, V. Barbaro, P. Bartolini, G. Calcagnini, A. Michelucci, G.F. Gensini, and S. Cerutti, Recurrent Patterns of Atrial Depolarization During Atrial Fibrillation Assessed by Recurrence Plot Quantification, Ann. Biomed. Eng., 2000, 28, p 61–70CrossRef F. Censi, V. Barbaro, P. Bartolini, G. Calcagnini, A. Michelucci, G.F. Gensini, and S. Cerutti, Recurrent Patterns of Atrial Depolarization During Atrial Fibrillation Assessed by Recurrence Plot Quantification, Ann. Biomed. Eng., 2000, 28, p 61–70CrossRef
28.
go back to reference M. Colafranceschi, A. Colosimo, J.P. Zbilut, V.N. Uversky, and A. Giuliani, Structure-Related Statistical Singularities Along Protein Sequences: A Correlation Study, J. Chem. Inf. Model., 2005, 45, p 83–189CrossRef M. Colafranceschi, A. Colosimo, J.P. Zbilut, V.N. Uversky, and A. Giuliani, Structure-Related Statistical Singularities Along Protein Sequences: A Correlation Study, J. Chem. Inf. Model., 2005, 45, p 83–189CrossRef
29.
go back to reference N. Marwan, M.C. Romano, M. Thiel, and J. Kurths, Recurrence Plots for the Analysis of Complex Systems, Phys. Rep., 2007, 438, p 237–329CrossRef N. Marwan, M.C. Romano, M. Thiel, and J. Kurths, Recurrence Plots for the Analysis of Complex Systems, Phys. Rep., 2007, 438, p 237–329CrossRef
30.
go back to reference E. Cazares-Ibáñez, G.A. Vázquez-Coutiño, and E. Garcia-Ochoa, Application of Recurrence Plots as a New Tool in the Analysis of Electrochemical Oscillations Of Copper, J. Electroanal. Chem., 2005, 583, p 17–33CrossRef E. Cazares-Ibáñez, G.A. Vázquez-Coutiño, and E. Garcia-Ochoa, Application of Recurrence Plots as a New Tool in the Analysis of Electrochemical Oscillations Of Copper, J. Electroanal. Chem., 2005, 583, p 17–33CrossRef
31.
go back to reference E. Garcia-Ochoa, J. Gonzalez-Sanchez, N. Acuña, and J. Euan, Analysis of the Dynamics of Intergranular Corrosion Process of Sensitised 304 Stainless Steel Using Recurrence Plots, J. Appl. Electrochem., 2009, 39, p 637–645CrossRef E. Garcia-Ochoa, J. Gonzalez-Sanchez, N. Acuña, and J. Euan, Analysis of the Dynamics of Intergranular Corrosion Process of Sensitised 304 Stainless Steel Using Recurrence Plots, J. Appl. Electrochem., 2009, 39, p 637–645CrossRef
32.
go back to reference Y. Yang, T. Zhang, Y. Shao, G. Meng, and F. Wang, Effect of Hydrostatic Pressure on the Corrosion Behaviour of Ni-Cr-Mo-V High Strength Steel, Corros. Sci., 2010, 52, p 2697–2706CrossRef Y. Yang, T. Zhang, Y. Shao, G. Meng, and F. Wang, Effect of Hydrostatic Pressure on the Corrosion Behaviour of Ni-Cr-Mo-V High Strength Steel, Corros. Sci., 2010, 52, p 2697–2706CrossRef
33.
go back to reference C.P. Kim and K. Nobe, Polarization of Copper in Acidic and Alkaline Solutions, Corrosion, 1971, 27(9), p 382–385CrossRef C.P. Kim and K. Nobe, Polarization of Copper in Acidic and Alkaline Solutions, Corrosion, 1971, 27(9), p 382–385CrossRef
34.
go back to reference M. Stern, The Electrochemical Behavior, Including Hydrogen Overvoltage, of Iron in Acid Environments, J. Electrochem. Soc., 1955, 102(11), p 609–616CrossRef M. Stern, The Electrochemical Behavior, Including Hydrogen Overvoltage, of Iron in Acid Environments, J. Electrochem. Soc., 1955, 102(11), p 609–616CrossRef
35.
go back to reference S.A. Sameh, I.K. Salih, S.H. Alwash, and A. Al-Waisty, Corrosion of Copper in Deaerated and Oxygenated 0.1 M H2SO4 Solutions under Controlled Conditions of Mass Transfer, Eng. Technol. J., 2009, 27(5), p 993–1007 S.A. Sameh, I.K. Salih, S.H. Alwash, and A. Al-Waisty, Corrosion of Copper in Deaerated and Oxygenated 0.1 M H2SO4 Solutions under Controlled Conditions of Mass Transfer, Eng. Technol. J., 2009, 27(5), p 993–1007
36.
go back to reference J.A. Koza, S. Mühlenhoff, M. Uhlemann, K. Eckert, A. Gebert, and L. Schultz, Desorption of Hydrogen from an Electrode Surface Under Influence of an External Magnetic Field—In-situ Microscopic Observations, Electrochem. Com., 2009, 11, p 425–429CrossRef J.A. Koza, S. Mühlenhoff, M. Uhlemann, K. Eckert, A. Gebert, and L. Schultz, Desorption of Hydrogen from an Electrode Surface Under Influence of an External Magnetic Field—In-situ Microscopic Observations, Electrochem. Com., 2009, 11, p 425–429CrossRef
37.
go back to reference J.A. Koza, M. Uhlemann, A. Gebert, and L. Schultz, Desorption of Hydrogen from the Electrode Surface Under the Influence of an External Magnetic Field, Electrochem. Comm., 2008, 10, p 1330–1333CrossRef J.A. Koza, M. Uhlemann, A. Gebert, and L. Schultz, Desorption of Hydrogen from the Electrode Surface Under the Influence of an External Magnetic Field, Electrochem. Comm., 2008, 10, p 1330–1333CrossRef
38.
go back to reference J.A. Koza, M. Uhlemann, A. Gebert, and L. Schultz, The Effect of a Magnetic Field on the pH Value in Front of the Electrode Surface During the Electrodeposition of Co, Fe and CoFe Alloys, Electroanal. Chem., 2008, 617(2), p 194–202CrossRef J.A. Koza, M. Uhlemann, A. Gebert, and L. Schultz, The Effect of a Magnetic Field on the pH Value in Front of the Electrode Surface During the Electrodeposition of Co, Fe and CoFe Alloys, Electroanal. Chem., 2008, 617(2), p 194–202CrossRef
39.
go back to reference J.A. Koza, M. Uhlemann, A. Gebert, and L. Schultz, The Effect of Magnetic Fields on the Electrodeposition of CoFe Alloys, Electrochim. Acta, 2008, 53, p 5344–5353CrossRef J.A. Koza, M. Uhlemann, A. Gebert, and L. Schultz, The Effect of Magnetic Fields on the Electrodeposition of CoFe Alloys, Electrochim. Acta, 2008, 53, p 5344–5353CrossRef
40.
go back to reference J.A. Koza, S. Muhlenholl, P. Zabinski, P.A. Nikrityuk, K. Eckert, M. Uhlemann, A. Gebert, T. Weier, L. Schultz, and S. Odenbach, Hydrogen Evolution Under the Influence of a Magnetic Field, Electrochim. Acta, 2011, 56(6), p 2665–2675CrossRef J.A. Koza, S. Muhlenholl, P. Zabinski, P.A. Nikrityuk, K. Eckert, M. Uhlemann, A. Gebert, T. Weier, L. Schultz, and S. Odenbach, Hydrogen Evolution Under the Influence of a Magnetic Field, Electrochim. Acta, 2011, 56(6), p 2665–2675CrossRef
41.
go back to reference E.-S.M. Sherif, R.M. Erasmus, and J.C. Comins, Inhibition of Copper Corrosion in Acidic Chloride Pickling Solutions by 5-(3-aminophenyl)-Tetrazole as a Corrosion Inhibitor, Corros. Sci., 2008, 50(12), p 3439–3445CrossRef E.-S.M. Sherif, R.M. Erasmus, and J.C. Comins, Inhibition of Copper Corrosion in Acidic Chloride Pickling Solutions by 5-(3-aminophenyl)-Tetrazole as a Corrosion Inhibitor, Corros. Sci., 2008, 50(12), p 3439–3445CrossRef
42.
go back to reference M. El-Sayed, Sherif, Corrosion Behavior of Copper in 0.50 M Hydrochloric Acid Pickling Solutions and its Inhibition by 3-Amino-1,2,4-triazole and 3-Amino-5-mercapto-1,2,4-triazole, Int. J. Electrochem. Sci., 2012, 7, p 1884–1897 M. El-Sayed, Sherif, Corrosion Behavior of Copper in 0.50 M Hydrochloric Acid Pickling Solutions and its Inhibition by 3-Amino-1,2,4-triazole and 3-Amino-5-mercapto-1,2,4-triazole, Int. J. Electrochem. Sci., 2012, 7, p 1884–1897
43.
go back to reference K. Balakrishnan and V.K. Venkatesan, Cathodic Reduction of Oxygen on Copper and Brass, Electrochim. Acta, 1979, 24(2), p 131–138CrossRef K. Balakrishnan and V.K. Venkatesan, Cathodic Reduction of Oxygen on Copper and Brass, Electrochim. Acta, 1979, 24(2), p 131–138CrossRef
44.
go back to reference R. Adzic, Recent advances in the kinetics of oxygen reduction, Electrocatalysis, Chapter 5, J. Lipkowski and P.N. Ross, Ed., Wiley, New York, 1998 R. Adzic, Recent advances in the kinetics of oxygen reduction, Electrocatalysis, Chapter 5, J. Lipkowski and P.N. Ross, Ed., Wiley, New York, 1998
45.
go back to reference Z. Lu and W. Yang, In situ Monitoring the Effects of a Magnetic Field on the Open-Circuit Corrosion States of Iron in Acidic and Neutral Solutions, Corros. Sci., 2008, 50, p 510–522CrossRef Z. Lu and W. Yang, In situ Monitoring the Effects of a Magnetic Field on the Open-Circuit Corrosion States of Iron in Acidic and Neutral Solutions, Corros. Sci., 2008, 50, p 510–522CrossRef
46.
go back to reference Z.P. Lu, D.L. Huang, W. Yang, and J. Congleton, Effects of an Applied Magnetic Field on the Dissolution and Passivation of Iron in Sulphuric Acid, Corros. Sci., 2003, 45, p 2233–2249CrossRef Z.P. Lu, D.L. Huang, W. Yang, and J. Congleton, Effects of an Applied Magnetic Field on the Dissolution and Passivation of Iron in Sulphuric Acid, Corros. Sci., 2003, 45, p 2233–2249CrossRef
47.
go back to reference Y.C. Tang, M. Gonzalez-Torreira, S. Yang, and A.J. Davenport, Effect of Magnetic Fields on Corrosion, JCSE, 2007, 6, p 46 Y.C. Tang, M. Gonzalez-Torreira, S. Yang, and A.J. Davenport, Effect of Magnetic Fields on Corrosion, JCSE, 2007, 6, p 46
48.
go back to reference G. Hinds, J.M.D. Coey, and M.E.G. Lyons, Influence of Magnetic Forces on Electrochemical Mass Transport, Electrochem. Commun., 2001, 3(5), p 215–218CrossRef G. Hinds, J.M.D. Coey, and M.E.G. Lyons, Influence of Magnetic Forces on Electrochemical Mass Transport, Electrochem. Commun., 2001, 3(5), p 215–218CrossRef
49.
go back to reference N.B. Chaure, F.M.F. Rhen, J. Hilton, and J.M.D. Coey, Design and Application of a Magnetic Field Gradient Electrode, Electrochem. Commun., 2007, 9(1), p 155–158CrossRef N.B. Chaure, F.M.F. Rhen, J. Hilton, and J.M.D. Coey, Design and Application of a Magnetic Field Gradient Electrode, Electrochem. Commun., 2007, 9(1), p 155–158CrossRef
50.
go back to reference M. Uhlemann, A. Krause, J.P. Chopart, and A. Gebert, Electrochemical Deposition of Co Under the Influence of High Magnetic Fields, J. Electrochem. Soc., 2005, 152(12), p C817–C826CrossRef M. Uhlemann, A. Krause, J.P. Chopart, and A. Gebert, Electrochemical Deposition of Co Under the Influence of High Magnetic Fields, J. Electrochem. Soc., 2005, 152(12), p C817–C826CrossRef
Metadata
Title
Copper Corrosion Under Non-uniform Magnetic Field in 0.5 M Hydrochloric Acid
Authors
E. Garcia-Ochoa
F. Corvo
J. Genesca
V. Sosa
P. Estupiñán
Publication date
13-04-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2667-x

Other articles of this Issue 5/2017

Journal of Materials Engineering and Performance 5/2017 Go to the issue

Premium Partners