Skip to main content
Top
Published in: Journal of Materials Science 18/2015

01-09-2015 | Original Paper

Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol–formaldehyde xerogel composites

Authors: Majid Haghgoo, Ali Akbar Yousefi, Mohammad Jalal Zohouriaan Mehr, Alexandre F. Léonard, Matthieu P. Philippe, Philippe Compère, Angélique Léonard, Nathalie Job

Published in: Journal of Materials Science | Issue 18/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Monolithic multi-walled carbon nanotube (MWCNT)/resorcinol–formaldehyde (RF) composite xerogel was synthesized by sol–gel polymerization of RF monomers in a surfactant-stabilized MWCNT aqueous suspension. The resulting composite wet gel was dried under ambient conditions and pyrolyzed in a N2 atmosphere to obtain MWCNT/carbon (C) nanoporous xerogel. TEM images showed that the nanotubes had been completely exfoliated in the starting solution before addition of the reagents. Optical microscopy and SEM micrographs revealed that there were aggregates of MWCNTs with diameters of up to 50 µm in the final composites. Nitrogen adsorption analysis and mercury porosimetry of the pristine MWCNT-free and composite gels showed that the density and pore texture of the xerogel materials were not modified by the nanotubes, but were strongly influenced by the addition of surfactant (sodium dodecyl benzene sulfonate, NaDBS). Electrical conductivity was measured for the organic (MWCNT/RF) and carbonized (MWCNT/C) composites and evaluations determined that this parameter increased in different ways as a function of MWCNT concentration. A percolating scaling law of the form σ ∝ (ϕ−ϕ c)t was obtained with a volume percolation threshold of ϕ c = 2.5 × 10−4 and a critical exponent (t) of 1.0 for the organic nanocomposite. After pyrolysis, the carbonized xerogels exhibited an entirely different behavior with a continuous sharp increase in electrical conductivity with nanotube loading (4.5-fold increase at 1.64 v % MWCNT). Comparison of the data for experimental conductivity with the effective medium theory enabled estimation of an average length for the conductive strings formed by connected nanotube aggregations throughout the carbon matrix.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Maldonado-Hódar FJ (2013) Advances in the development of nanostructured catalysts based on carbon gels. Catal Today 218:43–50CrossRef Maldonado-Hódar FJ (2013) Advances in the development of nanostructured catalysts based on carbon gels. Catal Today 218:43–50CrossRef
4.
go back to reference Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54:7444–7451CrossRef Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54:7444–7451CrossRef
5.
go back to reference Wiener M, Reichenauer G, Braxmeier S et al (2009) Carbon aerogel-based high-temperature thermal insulation. Int J Thermophys 30:1372–1385CrossRef Wiener M, Reichenauer G, Braxmeier S et al (2009) Carbon aerogel-based high-temperature thermal insulation. Int J Thermophys 30:1372–1385CrossRef
6.
go back to reference Gao X, Omosebi A, Landon J, Liu K (2015) Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy Environ Sci 8:897–909CrossRef Gao X, Omosebi A, Landon J, Liu K (2015) Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy Environ Sci 8:897–909CrossRef
7.
go back to reference Liu N, Shen J, Liu D (2013) A Fe 2 O 3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries. Electrochim Acta 97:271–277CrossRef Liu N, Shen J, Liu D (2013) A Fe 2 O 3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries. Electrochim Acta 97:271–277CrossRef
8.
go back to reference Worsley MA, Pauzauskie PJ, Kucheyev SO et al (2009) Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading. Acta Mater 57:5131–5136CrossRef Worsley MA, Pauzauskie PJ, Kucheyev SO et al (2009) Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading. Acta Mater 57:5131–5136CrossRef
9.
go back to reference Bordjiba T, Mohamedi M (2011) Molding versus dispersion: effect of the preparation procedure on the capacitive and cycle life of carbon nanotubes aerogel composites. J Solid State Electrochem 15:765–771CrossRef Bordjiba T, Mohamedi M (2011) Molding versus dispersion: effect of the preparation procedure on the capacitive and cycle life of carbon nanotubes aerogel composites. J Solid State Electrochem 15:765–771CrossRef
10.
go back to reference Worsley MA, Satcher JH Jr, Baumann TF (2008) Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir 24:9763–9766CrossRef Worsley MA, Satcher JH Jr, Baumann TF (2008) Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir 24:9763–9766CrossRef
11.
go back to reference Bouchard J, Cayla A, Devaux E, Campagne C (2013) Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Compos Sci Technol 86:177–184CrossRef Bouchard J, Cayla A, Devaux E, Campagne C (2013) Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Compos Sci Technol 86:177–184CrossRef
12.
go back to reference Périé T, Brosse A-C, Tencé-Girault S, Leibler L (2012) Mechanical and electrical properties of multi walled carbon nanotube/ABC block terpolymer composites. Carbon 50:2918–2928CrossRef Périé T, Brosse A-C, Tencé-Girault S, Leibler L (2012) Mechanical and electrical properties of multi walled carbon nanotube/ABC block terpolymer composites. Carbon 50:2918–2928CrossRef
13.
go back to reference Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260:89–94CrossRef Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260:89–94CrossRef
14.
go back to reference Bryning M. B.: Carbon nanotube networks in epoxy composites and aerogels. PhD Dissertation, University of Pennsylvania (2007) Bryning M. B.: Carbon nanotube networks in epoxy composites and aerogels. PhD Dissertation, University of Pennsylvania (2007)
15.
go back to reference Sahoo NG, Rana S, Cho JW et al (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRef Sahoo NG, Rana S, Cho JW et al (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867CrossRef
16.
go back to reference Li J, Ma PC, Chow WS et al (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215CrossRef Li J, Ma PC, Chow WS et al (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215CrossRef
17.
go back to reference Bao H, Sun Y, Xiong Z et al (2013) Effects of the dispersion state and aspect ratio of carbon nanotubes on their electrical percolation threshold in a polymer. J Appl Polym Sci 128:735–740CrossRef Bao H, Sun Y, Xiong Z et al (2013) Effects of the dispersion state and aspect ratio of carbon nanotubes on their electrical percolation threshold in a polymer. J Appl Polym Sci 128:735–740CrossRef
18.
go back to reference Park KS, Youn JR (2012) Dispersion and aspect ratio of carbon nanotubes in aqueous suspension and their relationship with electrical resistivity of carbon nanotube filled polymer composites. Carbon 50:2322–2330CrossRef Park KS, Youn JR (2012) Dispersion and aspect ratio of carbon nanotubes in aqueous suspension and their relationship with electrical resistivity of carbon nanotube filled polymer composites. Carbon 50:2322–2330CrossRef
19.
go back to reference Haghgoo M, Plougonven E, Yousefi AA et al (2012) Use of X-ray microtomography to study the homogeneity of carbon nanotube aqueous suspensions and carbon nanotube/polymer composites. Carbon 50:1703–1706CrossRef Haghgoo M, Plougonven E, Yousefi AA et al (2012) Use of X-ray microtomography to study the homogeneity of carbon nanotube aqueous suspensions and carbon nanotube/polymer composites. Carbon 50:1703–1706CrossRef
20.
go back to reference Haghgoo M, Yousefi AA, Mehr MJZ et al (2014) Characterization of multi-walled carbon nanotube dispersion in resorcinol–formaldehyde aerogels. Microporous Mesoporous Mater 184:97–104CrossRef Haghgoo M, Yousefi AA, Mehr MJZ et al (2014) Characterization of multi-walled carbon nanotube dispersion in resorcinol–formaldehyde aerogels. Microporous Mesoporous Mater 184:97–104CrossRef
21.
go back to reference Job N, Sabatier F, Pirard J-P et al (2006) Towards the production of carbon xerogel monoliths by optimizing convective drying conditions. Carbon 44:2534–2542CrossRef Job N, Sabatier F, Pirard J-P et al (2006) Towards the production of carbon xerogel monoliths by optimizing convective drying conditions. Carbon 44:2534–2542CrossRef
22.
go back to reference Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci USA 7:115–116CrossRef Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci USA 7:115–116CrossRef
23.
go back to reference Job N, Pirard R, Pirard J, Alié C (2006) Non Intrusive Mercury Porosimetry: pyrolysis of Resorcinol-Formaldehyde Xerogels. Part Part Syst Charact 23:72–81CrossRef Job N, Pirard R, Pirard J, Alié C (2006) Non Intrusive Mercury Porosimetry: pyrolysis of Resorcinol-Formaldehyde Xerogels. Part Part Syst Charact 23:72–81CrossRef
24.
go back to reference Job N, Pirard R, Marien J, Pirard J-P (2004) Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42:619–628CrossRef Job N, Pirard R, Marien J, Pirard J-P (2004) Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42:619–628CrossRef
25.
go back to reference White B, Banerjee S, O’Brien S et al (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111:13684–13690CrossRef White B, Banerjee S, O’Brien S et al (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111:13684–13690CrossRef
26.
go back to reference Zhao W, Song C, Pehrsson PE (2002) Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc 124:12418–12419CrossRef Zhao W, Song C, Pehrsson PE (2002) Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc 124:12418–12419CrossRef
27.
go back to reference Heister E, Lamprecht C, Neves V et al (2010) Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4:2615–2626CrossRef Heister E, Lamprecht C, Neves V et al (2010) Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4:2615–2626CrossRef
28.
go back to reference Feng J, Zhang C, Feng J et al (2011) Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Appl Mater Interfaces 3:4796–4803CrossRef Feng J, Zhang C, Feng J et al (2011) Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Appl Mater Interfaces 3:4796–4803CrossRef
29.
go back to reference Job N, Théry A, Pirard R et al (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494CrossRef Job N, Théry A, Pirard R et al (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494CrossRef
30.
go back to reference Haghgoo M, Yousefi AA, Mehr MJZ (2012) Nano porous structure of resorcinol–formaldehyde xerogels and aerogels: effect of sodium dodecylbenzene sulfonate. Iran Polym J 21:211–219CrossRef Haghgoo M, Yousefi AA, Mehr MJZ (2012) Nano porous structure of resorcinol–formaldehyde xerogels and aerogels: effect of sodium dodecylbenzene sulfonate. Iran Polym J 21:211–219CrossRef
31.
go back to reference Bordjiba T, Mohamedi M, Dao LH (2007) Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. J Power Sources 172:991–998CrossRef Bordjiba T, Mohamedi M, Dao LH (2007) Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. J Power Sources 172:991–998CrossRef
32.
go back to reference Kohlmeyer RR, Lor M, Deng J et al (2011) Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon 49:2352–2361CrossRef Kohlmeyer RR, Lor M, Deng J et al (2011) Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon 49:2352–2361CrossRef
33.
go back to reference Sandler JKW, Kirk JE, Kinloch IA et al (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899CrossRef Sandler JKW, Kirk JE, Kinloch IA et al (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899CrossRef
34.
go back to reference Celzard A, McRae E, Deleuze C et al (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53:6209CrossRef Celzard A, McRae E, Deleuze C et al (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53:6209CrossRef
35.
go back to reference Celzard A, Marêché JF, Payot F, Furdin G (2002) Electrical conductivity of carbonaceous powders. Carbon 40:2801–2815CrossRef Celzard A, Marêché JF, Payot F, Furdin G (2002) Electrical conductivity of carbonaceous powders. Carbon 40:2801–2815CrossRef
36.
go back to reference Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17:1186–1191CrossRef Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17:1186–1191CrossRef
37.
go back to reference Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67:922–928CrossRef Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67:922–928CrossRef
38.
go back to reference Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef
39.
go back to reference Schueler R, Petermann J, Schulte K, Wentzel H (1997) Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. J Appl Polym Sci 63:1741–1746CrossRef Schueler R, Petermann J, Schulte K, Wentzel H (1997) Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. J Appl Polym Sci 63:1741–1746CrossRef
40.
go back to reference Kilbride BE, Coleman JN, Fraysse J et al (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92:4024–4030CrossRef Kilbride BE, Coleman JN, Fraysse J et al (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92:4024–4030CrossRef
41.
go back to reference Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699CrossRef Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699CrossRef
Metadata
Title
Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol–formaldehyde xerogel composites
Authors
Majid Haghgoo
Ali Akbar Yousefi
Mohammad Jalal Zohouriaan Mehr
Alexandre F. Léonard
Matthieu P. Philippe
Philippe Compère
Angélique Léonard
Nathalie Job
Publication date
01-09-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9148-0

Other articles of this Issue 18/2015

Journal of Materials Science 18/2015 Go to the issue

Premium Partners