Skip to main content
Top
Published in: Metallurgist 5-6/2019

24-10-2019

Correlation of 12% Chromium Ferritic-Martensitic Steel Heat Resistance with Supercooled Austenite Stability Indices

Authors: M. Yu. Belomyttsev, A. V. Molyarov

Published in: Metallurgist | Issue 5-6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Development of new heat-resistant ferritic-martensitic steels with 12% chromium designed for operation at 700–720 °С is a complex multifactorial task. The main characteristics of such steels that define the possibility of their application at elevated temperature are high values of strength within the temperature range of 20–720 °С, and high values of creep resistance at temperatures of 650 °C and above with a satisfactory ductility level (at least 6–12% at 20–720 °С). A significant amount of time is required in the case of large range of steels investigated to determine the abovementioned properties. An important task is finding readily and quickly obtained properties by which it is possible to estimate the level of steel heat resistance properties. Diagrams for isothermal decomposition of supercooled austenite are analyzed and equations are found in the present work for their connection with yield strength and creep strength of the materials studied.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. A. Lanskaya, Heat-Resistant Steels [in Russian], Metallurgiya, Moscow (1969). K. A. Lanskaya, Heat-Resistant Steels [in Russian], Metallurgiya, Moscow (1969).
2.
go back to reference R. L. Klueh and D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM (2001). R. L. Klueh and D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM (2001).
3.
go back to reference N. M. Beskorovainyi, B. A. Kalin, P. A. Platonov, and I. I. Chernov, Nuclear Reactor Structural Materials, [in Russian], Énergoatomizdat, Moscow (1995). N. M. Beskorovainyi, B. A. Kalin, P. A. Platonov, and I. I. Chernov, Nuclear Reactor Structural Materials, [in Russian], Énergoatomizdat, Moscow (1995).
4.
go back to reference S. M. Obraztsov, G. A. Birzhevoi, Yu. V. Konobeev, et al., “Neuronetwork experiments for reaction of alloying elements on ferritic-martensitic steel with a 12-per cent chromium content mechanical properties,” Izv. Vyssh. Uchebn. Zaved., Yader. Énerg., No. 3, 119–124 (2008). S. M. Obraztsov, G. A. Birzhevoi, Yu. V. Konobeev, et al., “Neuronetwork experiments for reaction of alloying elements on ferritic-martensitic steel with a 12-per cent chromium content mechanical properties,” Izv. Vyssh. Uchebn. Zaved., Yader. Énerg., No. 3, 119–124 (2008).
5.
go back to reference F. B. Pickering, Steel Physical Metallurgy and Development [in Russian], Moscow (1982). F. B. Pickering, Steel Physical Metallurgy and Development [in Russian], Moscow (1982).
6.
go back to reference F. Abe, T.-U. Kernand, R. Viswanathan, Creep-Resistant Steels, Publishing, England (2008).CrossRef F. Abe, T.-U. Kernand, R. Viswanathan, Creep-Resistant Steels, Publishing, England (2008).CrossRef
7.
go back to reference “Structural materials for liquid metal cooled fast reactor fuel assemblies — operational behavior,” IAEA Nuclear Energy Series, No. NF-T-4.2, Vienna (2012). “Structural materials for liquid metal cooled fast reactor fuel assemblies — operational behavior,” IAEA Nuclear Energy Series, No. NF-T-4.2, Vienna (2012).
8.
go back to reference M. Yu. Bolomytsev, S. M. Obraztsov, and A. V. Molyarov, “Ratio of heat resistance and ferrite content in 12% chromium steels with a ferrite-martensite structure,” Metallurg, No. 9, 46–51 (2017). M. Yu. Bolomytsev, S. M. Obraztsov, and A. V. Molyarov, “Ratio of heat resistance and ferrite content in 12% chromium steels with a ferrite-martensite structure,” Metallurg, No. 9, 46–51 (2017).
9.
go back to reference H. Finkler and M. Schirra, “Transformation behaviour of high temperature martensitic steels with 8–14% chromium,” Steel Research, 67, No. 8, 328–342 (1996). H. Finkler and M. Schirra, “Transformation behaviour of high temperature martensitic steels with 8–14% chromium,” Steel Research, 67, No. 8, 328–342 (1996).
10.
go back to reference M. Yu. Bolomytsev, E. I. Kuz’ko, P. A. Prokof’ev, and T. D. Sulyaev, “Determination of critical temperatures and structural state of 13% chromium steels by a magnetometric method,” Izv. Vyssh. Uchebn. Zaved., Chern. Met., No. 60(9), 732–738 (2017). M. Yu. Bolomytsev, E. I. Kuz’ko, P. A. Prokof’ev, and T. D. Sulyaev, “Determination of critical temperatures and structural state of 13% chromium steels by a magnetometric method,” Izv. Vyssh. Uchebn. Zaved., Chern. Met., No. 60(9), 732–738 (2017).
11.
go back to reference V. I. Rachkov, S. M. Obraztsov, V. A. Solov’ev, et al., Optimization of the chemical composition of ferritic-martensitic steel with the aim of improving short-term mechanical properties,” Atomnya Énergiya, 115, No. 1, 22–27 (2013).CrossRef V. I. Rachkov, S. M. Obraztsov, V. A. Solov’ev, et al., Optimization of the chemical composition of ferritic-martensitic steel with the aim of improving short-term mechanical properties,” Atomnya Énergiya, 115, No. 1, 22–27 (2013).CrossRef
12.
go back to reference S. H. Ryu and Yu. Jin, “A new equation for the Cr equivalent in 9 to 12 % Cr steels,” Metallurgical and Materials Transactions A, 29, No. 6, 1573–1578 (1998). S. H. Ryu and Yu. Jin, “A new equation for the Cr equivalent in 9 to 12 % Cr steels,” Metallurgical and Materials Transactions A, 29, No. 6, 1573–1578 (1998).
13.
go back to reference G. I. Morozov, “Compensation of alloying disbalance for nickel superalloys,” MIToM, No. 12, 52–56 (2012). G. I. Morozov, “Compensation of alloying disbalance for nickel superalloys,” MIToM, No. 12, 52–56 (2012).
14.
go back to reference M. A. Stremel’, Alloy Strength. Part 1. Lattice Defects [in Russian], MISiS, Moscow (1999). M. A. Stremel’, Alloy Strength. Part 1. Lattice Defects [in Russian], MISiS, Moscow (1999).
Metadata
Title
Correlation of 12% Chromium Ferritic-Martensitic Steel Heat Resistance with Supercooled Austenite Stability Indices
Authors
M. Yu. Belomyttsev
A. V. Molyarov
Publication date
24-10-2019
Publisher
Springer US
Published in
Metallurgist / Issue 5-6/2019
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-019-00865-0

Other articles of this Issue 5-6/2019

Metallurgist 5-6/2019 Go to the issue

Premium Partners