Skip to main content
Top
Published in: International Journal of Computer Vision 3/2024

25-09-2023

Correspondence Distillation from NeRF-Based GAN

Authors: Yushi Lan, Chen Change Loy, Bo Dai

Published in: International Journal of Computer Vision | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The neural radiance field (NeRF) has shown promising results in preserving the fine details of objects and scenes. However, unlike explicit shape representations e.g., mesh, it remains an open problem to build dense correspondences across different NeRFs of the same category, which is essential in many downstream tasks. The main difficulties of this problem lie in the implicit nature of NeRF and the lack of ground-truth correspondence annotations. In this paper, we show it is possible to bypass these challenges by leveraging the rich semantics and structural priors encapsulated in a pre-trained NeRF-based GAN. Specifically, we exploit such priors from three aspects, namely (1) a dual deformation field that takes latent codes as global structural indicators, (2) a learning objective that regards generator features as geometric-aware local descriptors, and (3) a source of infinite object-specific NeRF samples. Our experiments demonstrate that such priors lead to 3D dense correspondence that is accurate, smooth, and robust. We also show that established dense correspondence across NeRFs can effectively enable many NeRF-based downstream applications such as texture transfer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3d faces. In SIGGRAPH. Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3d faces. In SIGGRAPH.
go back to reference Brock, A., Donahue, J., & Simonyan, K. (2019a). Large scale GAN training for high fidelity natural image synthesis. In ICLR. Brock, A., Donahue, J., & Simonyan, K. (2019a). Large scale GAN training for high fidelity natural image synthesis. In ICLR.
go back to reference Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., & Wetzstein, G. (2021a). pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis. In CVPR. Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., & Wetzstein, G. (2021a). pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis. In CVPR.
go back to reference Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2021b). Efficient geometry-aware 3D generative adversarial networks. In arXiv. Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2021b). Efficient geometry-aware 3D generative adversarial networks. In arXiv.
go back to reference Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., & Wetzstein, G. (2021c). pi-GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis. In CVPR. Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., & Wetzstein, G. (2021c). pi-GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis. In CVPR.
go back to reference Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2022a). Efficient geometry-aware 3D generative adversarial networks. In CVPR. Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2022a). Efficient geometry-aware 3D generative adversarial networks. In CVPR.
go back to reference Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2022b). Efficient geometry-aware 3D generative adversarial networks. In CVPR. Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2022b). Efficient geometry-aware 3D generative adversarial networks. In CVPR.
go back to reference Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015). ShapeNet: An Information-Rich 3D Model Repository. Tech. Rep. arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota Technological Institute at Chicago. Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015). ShapeNet: An Information-Rich 3D Model Repository. Tech. Rep. arXiv:​1512.​03012 [cs.GR], Stanford University — Princeton University — Toyota Technological Institute at Chicago.
go back to reference Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587. Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv:​1706.​05587.
go back to reference Chen, Z., & Zhang, H. (2019). Learning implicit fields for generative shape modeling. In CVPR, pp 5932–5941. Chen, Z., & Zhang, H. (2019). Learning implicit fields for generative shape modeling. In CVPR, pp 5932–5941.
go back to reference Cho, S., Hong, S., Jeon, S., Lee, Y., Sohn, K., & Kim, S. (2021). Cats: Cost aggregation transformers for visual correspondence. In Thirty-Fifth Conference on Neural Information Processing Systems. Cho, S., Hong, S., Jeon, S., Lee, Y., Sohn, K., & Kim, S. (2021). Cats: Cost aggregation transformers for visual correspondence. In Thirty-Fifth Conference on Neural Information Processing Systems.
go back to reference Deng, Y., Yang, J., & Tong, X. (2021). Deformed implicit field: Modeling 3d shapes with learned dense correspondence. In CVPR, pp 10286–10296. Deng, Y., Yang, J., & Tong, X. (2021). Deformed implicit field: Modeling 3d shapes with learned dense correspondence. In CVPR, pp 10286–10296.
go back to reference Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). Carla: An open urban driving simulator. In Proc. CoRL. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). Carla: An open urban driving simulator. In Proc. CoRL.
go back to reference Egger, B., Smith, W., Tewari, A., Wuhrer, S., Zollhöfer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., & Vetter, T. (2020). 3d morphable face models–past, present, and future. TOG, 39, 1–38.CrossRef Egger, B., Smith, W., Tewari, A., Wuhrer, S., Zollhöfer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., & Vetter, T. (2020). 3d morphable face models–past, present, and future. TOG, 39, 1–38.CrossRef
go back to reference Eisenberger, M., Novotný, D., Kerchenbaum, G., Labatut, P., Neverova, N., Cremers, D., & Vedaldi, A. (2021). Neuromorph: Unsupervised shape interpolation and correspondence in one go. In CVPR. Eisenberger, M., Novotný, D., Kerchenbaum, G., Labatut, P., Neverova, N., Cremers, D., & Vedaldi, A. (2021). Neuromorph: Unsupervised shape interpolation and correspondence in one go. In CVPR.
go back to reference Eslami, S. M. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L., Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz, N. C., King, H., Hillier, C., Botvinick, M. M., … Hassabis, D. (2018). Neural scene representation and rendering. Science, 360, 1204–1210.CrossRefPubMedADS Eslami, S. M. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L., Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz, N. C., King, H., Hillier, C., Botvinick, M. M., … Hassabis, D. (2018). Neural scene representation and rendering. Science, 360, 1204–1210.CrossRefPubMedADS
go back to reference Fan, Z., Hu, X., Chen, C., & Peng, S. (2019). Boosting local shape matching for dense 3d face correspondence. In CVPR, pp 10936–10946. Fan, Z., Hu, X., Chen, C., & Peng, S. (2019). Boosting local shape matching for dense 3d face correspondence. In CVPR, pp 10936–10946.
go back to reference Gafni, G., Thies, J., Zollhöfer, M., & Nießner, M. (2021). Dynamic neural radiance fields for monocular 4d facial avatar reconstruction. In CVPR, pp 8649–8658 Gafni, G., Thies, J., Zollhöfer, M., & Nießner, M. (2021). Dynamic neural radiance fields for monocular 4d facial avatar reconstruction. In CVPR, pp 8649–8658
go back to reference Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2014). Generative adversarial nets. In NIPS. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2014). Generative adversarial nets. In NIPS.
go back to reference Guo, Y., Chen, K., Liang, S., Liu, Y., Bao, H., & Zhang, J. (2021). Ad-nerf: Audio driven neural radiance fields for talking head synthesis. In ICCV. Guo, Y., Chen, K., Liang, S., Liu, Y., Bao, H., & Zhang, J. (2021). Ad-nerf: Audio driven neural radiance fields for talking head synthesis. In ICCV.
go back to reference Halimi, O., Litany, O., Rodola, E., Bronstein, A. M., & Kimmel, R. (2019). Unsupervised learning of dense shape correspondence. In CVPR, pp 4370–4379. Halimi, O., Litany, O., Rodola, E., Bronstein, A. M., & Kimmel, R. (2019). Unsupervised learning of dense shape correspondence. In CVPR, pp 4370–4379.
go back to reference He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR.
go back to reference He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2019). Momentum contrast for unsupervised visual representation learning. arXiv. He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2019). Momentum contrast for unsupervised visual representation learning. arXiv.
go back to reference Hong, S., Cho, S., Nam, J., Lin, S., & Kim, S. (2022a). Cost aggregation with 4d convolutional swin transformer for few-shot segmentation. In ECCV, Springer, pp 108–126. Hong, S., Cho, S., Nam, J., Lin, S., & Kim, S. (2022a). Cost aggregation with 4d convolutional swin transformer for few-shot segmentation. In ECCV, Springer, pp 108–126.
go back to reference Hong, Y., Peng, B., Xiao, H., Liu, L., & Zhang, J. (2022b). Headnerf: A real-time nerf-based parametric head model. In CVPR. Hong, Y., Peng, B., Xiao, H., Liu, L., & Zhang, J. (2022b). Headnerf: A real-time nerf-based parametric head model. In CVPR.
go back to reference Jahanian, A., Chai, L., & Isola, P. (2020). On the “steerability” of generative adversarial networks. In ICLR. Jahanian, A., Chai, L., & Isola, P. (2020). On the “steerability” of generative adversarial networks. In ICLR.
go back to reference Kaick, O. V., Zhang, H., Hamarneh, G., & Cohen-Or, D. (2011). A survey on shape correspondence. Computer Graphics Forum 30. Kaick, O. V., Zhang, H., Hamarneh, G., & Cohen-Or, D. (2011). A survey on shape correspondence. Computer Graphics Forum 30.
go back to reference Karras, T., Laine, S., & Aila, T. (2019a). A style-based generator architecture for generative adversarial networks. In CVPR. Karras, T., Laine, S., & Aila, T. (2019a). A style-based generator architecture for generative adversarial networks. In CVPR.
go back to reference Karras, T., Laine, S., & Aila, T. (2019b). A style-based generator architecture for generative adversarial networks. In CVPR, pp 4396–4405. Karras, T., Laine, S., & Aila, T. (2019b). A style-based generator architecture for generative adversarial networks. In CVPR, pp 4396–4405.
go back to reference Lan, Y., Meng, X., Yang, S., Loy, C. C., & Dai, B. (2023). E3dge: Self-supervised geometry-aware encoder for style-based 3d gan inversion. In Computer Vision and Pattern Recognition (CVPR). Lan, Y., Meng, X., Yang, S., Loy, C. C., & Dai, B. (2023). E3dge: Self-supervised geometry-aware encoder for style-based 3d gan inversion. In Computer Vision and Pattern Recognition (CVPR).
go back to reference Li, Z., & Snavely, N. (2018). Megadepth: Learning single-view depth prediction from internet photos. In ICCV, pp 2041–2050. Li, Z., & Snavely, N. (2018). Megadepth: Learning single-view depth prediction from internet photos. In ICCV, pp 2041–2050.
go back to reference Li, Z., Niklaus, S., Snavely, N., & Wang, O. (2021). Neural scene flow fields for space-time view synthesis of dynamic scenes. In CVPR. Li, Z., Niklaus, S., Snavely, N., & Wang, O. (2021). Neural scene flow fields for space-time view synthesis of dynamic scenes. In CVPR.
go back to reference Litany, O., Remez, T., Rodolà, E., Bronstein, A., & Bronstein, M. (2017). Deep functional maps: Structured prediction for dense shape correspondence. In ICCV, pp 5660–5668. Litany, O., Remez, T., Rodolà, E., Bronstein, A., & Bronstein, M. (2017). Deep functional maps: Structured prediction for dense shape correspondence. In ICCV, pp 5660–5668.
go back to reference Liu, C., Yuen, J., & Torralba, A. (2011). Sift flow: Dense correspondence across scenes and its applications. PAMI, 33, 978–994.CrossRef Liu, C., Yuen, J., & Torralba, A. (2011). Sift flow: Dense correspondence across scenes and its applications. PAMI, 33, 978–994.CrossRef
go back to reference Liu, F., & Liu, X. (2020). Learning implicit functions for topology-varying dense 3d shape correspondence. In NIPS, Virtual. Liu, F., & Liu, X. (2020). Learning implicit functions for topology-varying dense 3d shape correspondence. In NIPS, Virtual.
go back to reference Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In ICCV. Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In ICCV.
go back to reference Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J. (2015). Smpl: A skinned multi-person linear model. TOG, 34(6), 1–16.CrossRef Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J. (2015). Smpl: A skinned multi-person linear model. TOG, 34(6), 1–16.CrossRef
go back to reference Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Int. Conf. Comput. Vis., IEEE, vol 2, pp 1150–1157. Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Int. Conf. Comput. Vis., IEEE, vol 2, pp 1150–1157.
go back to reference Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. (2019). Occupancy networks: Learning 3d reconstruction in function space. In CVPR, pp 4460–4470. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. (2019). Occupancy networks: Learning 3d reconstruction in function space. In CVPR, pp 4460–4470.
go back to reference Mescheder, L. M., Geiger, A., & Nowozin, S. (2018). Which training methods for gans do actually converge? In ICML. Mescheder, L. M., Geiger, A., & Nowozin, S. (2018). Which training methods for gans do actually converge? In ICML.
go back to reference Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, Springer, pp 405–421. Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, Springer, pp 405–421.
go back to reference Mu, J., De Mello, S., Yu, Z., Vasconcelos, N., Wang, X., Kautz, J., & Liu, S. (2022). Coordgan: Self-supervised dense correspondences emerge from gans. In CVPR. Mu, J., De Mello, S., Yu, Z., Vasconcelos, N., Wang, X., Kautz, J., & Liu, S. (2022). Coordgan: Self-supervised dense correspondences emerge from gans. In CVPR.
go back to reference Niemeyer, M., & Geiger, A. (2021). Giraffe: Representing scenes as compositional generative neural feature fields. In CVPR. Niemeyer, M., & Geiger, A. (2021). Giraffe: Representing scenes as compositional generative neural feature fields. In CVPR.
go back to reference Noguchi, A., Sun, X., Lin, S., & Harada, T. (2021). Neural articulated radiance field. In ICCV. Noguchi, A., Sun, X., Lin, S., & Harada, T. (2021). Neural articulated radiance field. In ICCV.
go back to reference Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J. J., & Kemelmacher-Shlizerman, I. (2021). StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation. In CVPR. Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J. J., & Kemelmacher-Shlizerman, I. (2021). StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation. In CVPR.
go back to reference Pan, X., Dai, B., Liu, Z., Loy, C. C., & Luo, P. (2021). Do 2d gans know 3d shape? unsupervised 3d shape reconstruction from 2d image gans. In ICLR Pan, X., Dai, B., Liu, Z., Loy, C. C., & Luo, P. (2021). Do 2d gans know 3d shape? unsupervised 3d shape reconstruction from 2d image gans. In ICLR
go back to reference Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D. B., Seitz, S. M., & Martin-Brualla, R. (2021a). Nerfies: Deformable neural radiance fields. In ICCV. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D. B., Seitz, S. M., & Martin-Brualla, R. (2021a). Nerfies: Deformable neural radiance fields. In ICCV.
go back to reference Park, K., Sinha, U., Barron, J. T., Bouaziz, S., Goldman, D. B., Seitz, S. M., & Martin-Brualla, R. (2021b). Nerfies: Deformable neural radiance fields. In ICCV. Park, K., Sinha, U., Barron, J. T., Bouaziz, S., Goldman, D. B., Seitz, S. M., & Martin-Brualla, R. (2021b). Nerfies: Deformable neural radiance fields. In ICCV.
go back to reference Park, K., Sinha, U., Hedman, P., Barron, J. T., Bouaziz, S., Goldman, D. B., Martin-Brualla, R., & Seitz, S. M. (2021c). Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields. TOG 40(6). Park, K., Sinha, U., Hedman, P., Barron, J. T., Bouaziz, S., Goldman, D. B., Martin-Brualla, R., & Seitz, S. M. (2021c). Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields. TOG 40(6).
go back to reference Park, T., Zhu, J. Y., Wang, O., Lu, J., Shechtman, E., Efros, A. A., & Zhang, R. (2020). Swapping autoencoder for deep image manipulation. In NIPS. Park, T., Zhu, J. Y., Wang, O., Lu, J., Shechtman, E., Efros, A. A., & Zhang, R. (2020). Swapping autoencoder for deep image manipulation. In NIPS.
go back to reference Peebles, W., Zhu, J. Y., Zhang, R., Torralba, A., Efros, A., & Shechtman, E. (2022). Gan-supervised dense visual alignment. In CVPR. Peebles, W., Zhu, J. Y., Zhang, R., Torralba, A., Efros, A., & Shechtman, E. (2022). Gan-supervised dense visual alignment. In CVPR.
go back to reference Perez, E., Strub, F., De Vries, H., Dumoulin, V., & Courville, A. (2018). Film: Visual reasoning with a general conditioning layer. In AAAI, vol 32. Perez, E., Strub, F., De Vries, H., Dumoulin, V., & Courville, A. (2018). Film: Visual reasoning with a general conditioning layer. In AAAI, vol 32.
go back to reference Pumarola, A., Corona, E., Pons-Moll, G., & Moreno-Noguer, F. (2020). D-NeRF: Neural Radiance Fields for Dynamic Scenes. In CVPR. Pumarola, A., Corona, E., Pons-Moll, G., & Moreno-Noguer, F. (2020). D-NeRF: Neural Radiance Fields for Dynamic Scenes. In CVPR.
go back to reference Qi, C., Su, H., Mo, K., & Guibas, L. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In CVPR, pp 77–85 Qi, C., Su, H., Mo, K., & Guibas, L. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In CVPR, pp 77–85
go back to reference Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, Y., Shapiro, S., & Cohen-Or, D. (2021). Encoding in style: a stylegan encoder for image-to-image translation. In CVPR. Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, Y., Shapiro, S., & Cohen-Or, D. (2021). Encoding in style: a stylegan encoder for image-to-image translation. In CVPR.
go back to reference Sahillioglu, Y. (2019). Recent advances in shape correspondence. The Visual Computer, 36, 1705–1721.CrossRef Sahillioglu, Y. (2019). Recent advances in shape correspondence. The Visual Computer, 36, 1705–1721.CrossRef
go back to reference Schwarz, K., Liao, Y., Niemeyer, M., & Geiger, A. (2020). Graf: Generative radiance fields for 3d-aware image synthesis. In NIPS. Schwarz, K., Liao, Y., Niemeyer, M., & Geiger, A. (2020). Graf: Generative radiance fields for 3d-aware image synthesis. In NIPS.
go back to reference Shen, Y., Yang, C., Tang, X., & Zhou, B. (2020). Interfacegan: Interpreting the disentangled face representation learned by gans. PAMI PP. Shen, Y., Yang, C., Tang, X., & Zhou, B. (2020). Interfacegan: Interpreting the disentangled face representation learned by gans. PAMI PP.
go back to reference Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In CoRR, arXiv:1409.1556. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In CoRR, arXiv:​1409.​1556.
go back to reference Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B., & Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. In NIPS. Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B., & Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. In NIPS.
go back to reference Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains. In NIPS. Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains. In NIPS.
go back to reference Teed, Z., & Deng, J. (2020). Raft: Recurrent all-pairs field transforms for optical flow. In ECCV. Teed, Z., & Deng, J. (2020). Raft: Recurrent all-pairs field transforms for optical flow. In ECCV.
go back to reference Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-Brualla, R., Simon, T., Saragih, J., Nießner, M., Pandey, R., Fanello, S., Wetzstein, G., Zhu, J. Y., Theobalt, C., Agrawala, M., Shechtman, E., Goldman, D. B., & Zollhöfer, M. (2020). State of the Art on Neural Rendering. Computer Graphics Forum. Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-Brualla, R., Simon, T., Saragih, J., Nießner, M., Pandey, R., Fanello, S., Wetzstein, G., Zhu, J. Y., Theobalt, C., Agrawala, M., Shechtman, E., Goldman, D. B., & Zollhöfer, M. (2020). State of the Art on Neural Rendering. Computer Graphics Forum.
go back to reference Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., & Cohen-Or, D. (2021). Designing an encoder for stylegan image manipulation. arXiv. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., & Cohen-Or, D. (2021). Designing an encoder for stylegan image manipulation. arXiv.
go back to reference Tritrong, N., Rewatbowornwong, P., & Suwajanakorn, S. (2021). Repurposing gans for one-shot semantic part segmentation. In CVPR. Tritrong, N., Rewatbowornwong, P., & Suwajanakorn, S. (2021). Repurposing gans for one-shot semantic part segmentation. In CVPR.
go back to reference Truong, P., Danelljan, M., Gool, L. V., & Timofte, R. (2020a). GOCor: Bringing globally optimized correspondence volumes into your neural network. In NIPS. Truong, P., Danelljan, M., Gool, L. V., & Timofte, R. (2020a). GOCor: Bringing globally optimized correspondence volumes into your neural network. In NIPS.
go back to reference Truong, P., Danelljan, M., & Timofte, R. (2020b). Glu-net: Global-local universal network for dense flow and correspondences. In CVPR, pp 6257–6267. Truong, P., Danelljan, M., & Timofte, R. (2020b). Glu-net: Global-local universal network for dense flow and correspondences. In CVPR, pp 6257–6267.
go back to reference Truong, P., Danelljan, M., Gool, L. V., & Timofte, R. (2021). Learning accurate dense correspondences and when to trust them. In CVPR, pp 5710–5720. Truong, P., Danelljan, M., Gool, L. V., & Timofte, R. (2021). Learning accurate dense correspondences and when to trust them. In CVPR, pp 5710–5720.
go back to reference Wang, X., Bo, L., & Fuxin, L. (2019a). Adaptive wing loss for robust face alignment via heatmap regression. In ICCV Wang, X., Bo, L., & Fuxin, L. (2019a). Adaptive wing loss for robust face alignment via heatmap regression. In ICCV
go back to reference Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M., & Solomon, J. (2019). Dynamic graph cnn for learning on point clouds. TOG, 38, 1–12. Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M., & Solomon, J. (2019). Dynamic graph cnn for learning on point clouds. TOG, 38, 1–12.
go back to reference Wang, Z., Bagautdinov, T., Lombardi, S., Simon, T., Saragih, J., Hodgins, J., & Zollhofer, M. (2021). Learning compositional radiance fields of dynamic human heads. In CVPR, pp 5704–5713. Wang, Z., Bagautdinov, T., Lombardi, S., Simon, T., Saragih, J., Hodgins, J., & Zollhofer, M. (2021). Learning compositional radiance fields of dynamic human heads. In CVPR, pp 5704–5713.
go back to reference Wood, E., Baltrušaitis, T., Hewitt, C., Dziadzio, S., Johnson, M., Estellers, V., Cashman, T. J., & Shotton, J. (2021). Fake it till you make it: Face analysis in the wild using synthetic data alone. In Int. Conf. Comput. Vis. Wood, E., Baltrušaitis, T., Hewitt, C., Dziadzio, S., Johnson, M., Estellers, V., Cashman, T. J., & Shotton, J. (2021). Fake it till you make it: Face analysis in the wild using synthetic data alone. In Int. Conf. Comput. Vis.
go back to reference Xu, J., & Wang, X. (2021). Rethinking self-supervised correspondence learning: A video frame-level similarity perspective. arXiv. Xu, J., & Wang, X. (2021). Rethinking self-supervised correspondence learning: A video frame-level similarity perspective. arXiv.
go back to reference Yang, G., Belongie, S., Hariharan, B., & Koltun, V. (2021). Geometry processing with neural fields. In Thirty-Fifth Conference on Neural Information Processing Systems. Yang, G., Belongie, S., Hariharan, B., & Koltun, V. (2021). Geometry processing with neural fields. In Thirty-Fifth Conference on Neural Information Processing Systems.
go back to reference Yang, S., Jiang, L., Liu, Z., & Loy, C. C. (2022). Unsupervised image-to-image translation with generative prior. In CVPR. Yang, S., Jiang, L., Liu, Z., & Loy, C. C. (2022). Unsupervised image-to-image translation with generative prior. In CVPR.
go back to reference Yu, A., Ye, V., Tancik, M., & Kanazawa, A. (2021). pixelnerf: Neural radiance fields from one or few images. In CVPR, pp 4578–4587. Yu, A., Ye, V., Tancik, M., & Kanazawa, A. (2021). pixelnerf: Neural radiance fields from one or few images. In CVPR, pp 4578–4587.
go back to reference Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23, 1499–1503.CrossRefADS Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23, 1499–1503.CrossRefADS
go back to reference Zhang, K., Riegler, G., Snavely, N., & Koltun, V. (2020). Nerf++: Analyzing and improving neural radiance fields. arXiv. Zhang, K., Riegler, G., Snavely, N., & Koltun, V. (2020). Nerf++: Analyzing and improving neural radiance fields. arXiv.
go back to reference Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In CVPR. Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In CVPR.
go back to reference Zhang, W., Sun, J., & Tang, X. (2008). Cat head detection - how to effectively exploit shape and texture features. In ECCV. Zhang, W., Sun, J., & Tang, X. (2008). Cat head detection - how to effectively exploit shape and texture features. In ECCV.
go back to reference Zhang, Y., Chen, W., Ling, H., Gao, J., Zhang, Y., Torralba, A., & Fidler, S. (2021a). Image gans meet differentiable rendering for inverse graphics and interpretable 3d neural rendering. In ICLR Zhang, Y., Chen, W., Ling, H., Gao, J., Zhang, Y., Torralba, A., & Fidler, S. (2021a). Image gans meet differentiable rendering for inverse graphics and interpretable 3d neural rendering. In ICLR
go back to reference Zhang, Y., Ling, H., Gao, J., Yin, K., Lafleche, J. F., Barriuso, A., Torralba, A., & Fidler, S. (2021b). Datasetgan: Efficient labeled data factory with minimal human effort. In CVPR. Zhang, Y., Ling, H., Gao, J., Yin, K., Lafleche, J. F., Barriuso, A., Torralba, A., & Fidler, S. (2021b). Datasetgan: Efficient labeled data factory with minimal human effort. In CVPR.
go back to reference Zheng, Y., Abrevaya, V. F., Bühler, M. C., Chen, X., Black, M. J., & Hilliges, O. (2022). I M Avatar: Implicit morphable head avatars from videos. In CVPR. Zheng, Y., Abrevaya, V. F., Bühler, M. C., Chen, X., Black, M. J., & Hilliges, O. (2022). I M Avatar: Implicit morphable head avatars from videos. In CVPR.
go back to reference Zheng, Z., Yu, T., Dai, Q., & Liu, Y. (2021). Deep implicit templates for 3d shape representation. In CVPR, pp 1429–1439. Zheng, Z., Yu, T., Dai, Q., & Liu, Y. (2021). Deep implicit templates for 3d shape representation. In CVPR, pp 1429–1439.
go back to reference Zhou, P., Xie, L., Ni, B., & Tian, Q. (2021). CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. arXiv:2110.09788. Zhou, P., Xie, L., Ni, B., & Tian, Q. (2021). CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. arXiv:​2110.​09788.
go back to reference Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q., & Efros, A. A. (2016). Learning dense correspondence via 3d-guided cycle consistency. In CVPR, pp 117–126 Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q., & Efros, A. A. (2016). Learning dense correspondence via 3d-guided cycle consistency. In CVPR, pp 117–126
Metadata
Title
Correspondence Distillation from NeRF-Based GAN
Authors
Yushi Lan
Chen Change Loy
Bo Dai
Publication date
25-09-2023
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 3/2024
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-023-01903-w

Other articles of this Issue 3/2024

International Journal of Computer Vision 3/2024 Go to the issue

Premium Partner