Skip to main content
Erschienen in: International Journal of Computer Vision 3/2024

25.09.2023

Correspondence Distillation from NeRF-Based GAN

verfasst von: Yushi Lan, Chen Change Loy, Bo Dai

Erschienen in: International Journal of Computer Vision | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The neural radiance field (NeRF) has shown promising results in preserving the fine details of objects and scenes. However, unlike explicit shape representations e.g., mesh, it remains an open problem to build dense correspondences across different NeRFs of the same category, which is essential in many downstream tasks. The main difficulties of this problem lie in the implicit nature of NeRF and the lack of ground-truth correspondence annotations. In this paper, we show it is possible to bypass these challenges by leveraging the rich semantics and structural priors encapsulated in a pre-trained NeRF-based GAN. Specifically, we exploit such priors from three aspects, namely (1) a dual deformation field that takes latent codes as global structural indicators, (2) a learning objective that regards generator features as geometric-aware local descriptors, and (3) a source of infinite object-specific NeRF samples. Our experiments demonstrate that such priors lead to 3D dense correspondence that is accurate, smooth, and robust. We also show that established dense correspondence across NeRFs can effectively enable many NeRF-based downstream applications such as texture transfer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3d faces. In SIGGRAPH. Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3d faces. In SIGGRAPH.
Zurück zum Zitat Brock, A., Donahue, J., & Simonyan, K. (2019a). Large scale GAN training for high fidelity natural image synthesis. In ICLR. Brock, A., Donahue, J., & Simonyan, K. (2019a). Large scale GAN training for high fidelity natural image synthesis. In ICLR.
Zurück zum Zitat Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., & Wetzstein, G. (2021a). pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis. In CVPR. Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., & Wetzstein, G. (2021a). pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis. In CVPR.
Zurück zum Zitat Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2021b). Efficient geometry-aware 3D generative adversarial networks. In arXiv. Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2021b). Efficient geometry-aware 3D generative adversarial networks. In arXiv.
Zurück zum Zitat Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., & Wetzstein, G. (2021c). pi-GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis. In CVPR. Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., & Wetzstein, G. (2021c). pi-GAN: Periodic implicit generative adversarial networks for 3D-aware image synthesis. In CVPR.
Zurück zum Zitat Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2022a). Efficient geometry-aware 3D generative adversarial networks. In CVPR. Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2022a). Efficient geometry-aware 3D generative adversarial networks. In CVPR.
Zurück zum Zitat Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2022b). Efficient geometry-aware 3D generative adversarial networks. In CVPR. Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis, S., Karras, T., & Wetzstein, G. (2022b). Efficient geometry-aware 3D generative adversarial networks. In CVPR.
Zurück zum Zitat Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015). ShapeNet: An Information-Rich 3D Model Repository. Tech. Rep. arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota Technological Institute at Chicago. Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., & Yu, F. (2015). ShapeNet: An Information-Rich 3D Model Repository. Tech. Rep. arXiv:​1512.​03012 [cs.GR], Stanford University — Princeton University — Toyota Technological Institute at Chicago.
Zurück zum Zitat Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587. Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv:​1706.​05587.
Zurück zum Zitat Chen, Z., & Zhang, H. (2019). Learning implicit fields for generative shape modeling. In CVPR, pp 5932–5941. Chen, Z., & Zhang, H. (2019). Learning implicit fields for generative shape modeling. In CVPR, pp 5932–5941.
Zurück zum Zitat Cho, S., Hong, S., Jeon, S., Lee, Y., Sohn, K., & Kim, S. (2021). Cats: Cost aggregation transformers for visual correspondence. In Thirty-Fifth Conference on Neural Information Processing Systems. Cho, S., Hong, S., Jeon, S., Lee, Y., Sohn, K., & Kim, S. (2021). Cats: Cost aggregation transformers for visual correspondence. In Thirty-Fifth Conference on Neural Information Processing Systems.
Zurück zum Zitat Deng, Y., Yang, J., & Tong, X. (2021). Deformed implicit field: Modeling 3d shapes with learned dense correspondence. In CVPR, pp 10286–10296. Deng, Y., Yang, J., & Tong, X. (2021). Deformed implicit field: Modeling 3d shapes with learned dense correspondence. In CVPR, pp 10286–10296.
Zurück zum Zitat Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). Carla: An open urban driving simulator. In Proc. CoRL. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). Carla: An open urban driving simulator. In Proc. CoRL.
Zurück zum Zitat Egger, B., Smith, W., Tewari, A., Wuhrer, S., Zollhöfer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., & Vetter, T. (2020). 3d morphable face models–past, present, and future. TOG, 39, 1–38.CrossRef Egger, B., Smith, W., Tewari, A., Wuhrer, S., Zollhöfer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., & Vetter, T. (2020). 3d morphable face models–past, present, and future. TOG, 39, 1–38.CrossRef
Zurück zum Zitat Eisenberger, M., Novotný, D., Kerchenbaum, G., Labatut, P., Neverova, N., Cremers, D., & Vedaldi, A. (2021). Neuromorph: Unsupervised shape interpolation and correspondence in one go. In CVPR. Eisenberger, M., Novotný, D., Kerchenbaum, G., Labatut, P., Neverova, N., Cremers, D., & Vedaldi, A. (2021). Neuromorph: Unsupervised shape interpolation and correspondence in one go. In CVPR.
Zurück zum Zitat Eslami, S. M. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L., Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz, N. C., King, H., Hillier, C., Botvinick, M. M., … Hassabis, D. (2018). Neural scene representation and rendering. Science, 360, 1204–1210.CrossRefPubMedADS Eslami, S. M. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L., Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz, N. C., King, H., Hillier, C., Botvinick, M. M., … Hassabis, D. (2018). Neural scene representation and rendering. Science, 360, 1204–1210.CrossRefPubMedADS
Zurück zum Zitat Fan, Z., Hu, X., Chen, C., & Peng, S. (2019). Boosting local shape matching for dense 3d face correspondence. In CVPR, pp 10936–10946. Fan, Z., Hu, X., Chen, C., & Peng, S. (2019). Boosting local shape matching for dense 3d face correspondence. In CVPR, pp 10936–10946.
Zurück zum Zitat Gafni, G., Thies, J., Zollhöfer, M., & Nießner, M. (2021). Dynamic neural radiance fields for monocular 4d facial avatar reconstruction. In CVPR, pp 8649–8658 Gafni, G., Thies, J., Zollhöfer, M., & Nießner, M. (2021). Dynamic neural radiance fields for monocular 4d facial avatar reconstruction. In CVPR, pp 8649–8658
Zurück zum Zitat Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2014). Generative adversarial nets. In NIPS. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2014). Generative adversarial nets. In NIPS.
Zurück zum Zitat Guo, Y., Chen, K., Liang, S., Liu, Y., Bao, H., & Zhang, J. (2021). Ad-nerf: Audio driven neural radiance fields for talking head synthesis. In ICCV. Guo, Y., Chen, K., Liang, S., Liu, Y., Bao, H., & Zhang, J. (2021). Ad-nerf: Audio driven neural radiance fields for talking head synthesis. In ICCV.
Zurück zum Zitat Halimi, O., Litany, O., Rodola, E., Bronstein, A. M., & Kimmel, R. (2019). Unsupervised learning of dense shape correspondence. In CVPR, pp 4370–4379. Halimi, O., Litany, O., Rodola, E., Bronstein, A. M., & Kimmel, R. (2019). Unsupervised learning of dense shape correspondence. In CVPR, pp 4370–4379.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR.
Zurück zum Zitat He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2019). Momentum contrast for unsupervised visual representation learning. arXiv. He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2019). Momentum contrast for unsupervised visual representation learning. arXiv.
Zurück zum Zitat Hong, S., Cho, S., Nam, J., Lin, S., & Kim, S. (2022a). Cost aggregation with 4d convolutional swin transformer for few-shot segmentation. In ECCV, Springer, pp 108–126. Hong, S., Cho, S., Nam, J., Lin, S., & Kim, S. (2022a). Cost aggregation with 4d convolutional swin transformer for few-shot segmentation. In ECCV, Springer, pp 108–126.
Zurück zum Zitat Hong, Y., Peng, B., Xiao, H., Liu, L., & Zhang, J. (2022b). Headnerf: A real-time nerf-based parametric head model. In CVPR. Hong, Y., Peng, B., Xiao, H., Liu, L., & Zhang, J. (2022b). Headnerf: A real-time nerf-based parametric head model. In CVPR.
Zurück zum Zitat Jahanian, A., Chai, L., & Isola, P. (2020). On the “steerability” of generative adversarial networks. In ICLR. Jahanian, A., Chai, L., & Isola, P. (2020). On the “steerability” of generative adversarial networks. In ICLR.
Zurück zum Zitat Kaick, O. V., Zhang, H., Hamarneh, G., & Cohen-Or, D. (2011). A survey on shape correspondence. Computer Graphics Forum 30. Kaick, O. V., Zhang, H., Hamarneh, G., & Cohen-Or, D. (2011). A survey on shape correspondence. Computer Graphics Forum 30.
Zurück zum Zitat Karras, T., Laine, S., & Aila, T. (2019a). A style-based generator architecture for generative adversarial networks. In CVPR. Karras, T., Laine, S., & Aila, T. (2019a). A style-based generator architecture for generative adversarial networks. In CVPR.
Zurück zum Zitat Karras, T., Laine, S., & Aila, T. (2019b). A style-based generator architecture for generative adversarial networks. In CVPR, pp 4396–4405. Karras, T., Laine, S., & Aila, T. (2019b). A style-based generator architecture for generative adversarial networks. In CVPR, pp 4396–4405.
Zurück zum Zitat Lan, Y., Meng, X., Yang, S., Loy, C. C., & Dai, B. (2023). E3dge: Self-supervised geometry-aware encoder for style-based 3d gan inversion. In Computer Vision and Pattern Recognition (CVPR). Lan, Y., Meng, X., Yang, S., Loy, C. C., & Dai, B. (2023). E3dge: Self-supervised geometry-aware encoder for style-based 3d gan inversion. In Computer Vision and Pattern Recognition (CVPR).
Zurück zum Zitat Li, Z., & Snavely, N. (2018). Megadepth: Learning single-view depth prediction from internet photos. In ICCV, pp 2041–2050. Li, Z., & Snavely, N. (2018). Megadepth: Learning single-view depth prediction from internet photos. In ICCV, pp 2041–2050.
Zurück zum Zitat Li, Z., Niklaus, S., Snavely, N., & Wang, O. (2021). Neural scene flow fields for space-time view synthesis of dynamic scenes. In CVPR. Li, Z., Niklaus, S., Snavely, N., & Wang, O. (2021). Neural scene flow fields for space-time view synthesis of dynamic scenes. In CVPR.
Zurück zum Zitat Litany, O., Remez, T., Rodolà, E., Bronstein, A., & Bronstein, M. (2017). Deep functional maps: Structured prediction for dense shape correspondence. In ICCV, pp 5660–5668. Litany, O., Remez, T., Rodolà, E., Bronstein, A., & Bronstein, M. (2017). Deep functional maps: Structured prediction for dense shape correspondence. In ICCV, pp 5660–5668.
Zurück zum Zitat Liu, C., Yuen, J., & Torralba, A. (2011). Sift flow: Dense correspondence across scenes and its applications. PAMI, 33, 978–994.CrossRef Liu, C., Yuen, J., & Torralba, A. (2011). Sift flow: Dense correspondence across scenes and its applications. PAMI, 33, 978–994.CrossRef
Zurück zum Zitat Liu, F., & Liu, X. (2020). Learning implicit functions for topology-varying dense 3d shape correspondence. In NIPS, Virtual. Liu, F., & Liu, X. (2020). Learning implicit functions for topology-varying dense 3d shape correspondence. In NIPS, Virtual.
Zurück zum Zitat Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In ICCV. Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In ICCV.
Zurück zum Zitat Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J. (2015). Smpl: A skinned multi-person linear model. TOG, 34(6), 1–16.CrossRef Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & Black, M. J. (2015). Smpl: A skinned multi-person linear model. TOG, 34(6), 1–16.CrossRef
Zurück zum Zitat Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Int. Conf. Comput. Vis., IEEE, vol 2, pp 1150–1157. Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Int. Conf. Comput. Vis., IEEE, vol 2, pp 1150–1157.
Zurück zum Zitat Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. (2019). Occupancy networks: Learning 3d reconstruction in function space. In CVPR, pp 4460–4470. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. (2019). Occupancy networks: Learning 3d reconstruction in function space. In CVPR, pp 4460–4470.
Zurück zum Zitat Mescheder, L. M., Geiger, A., & Nowozin, S. (2018). Which training methods for gans do actually converge? In ICML. Mescheder, L. M., Geiger, A., & Nowozin, S. (2018). Which training methods for gans do actually converge? In ICML.
Zurück zum Zitat Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, Springer, pp 405–421. Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R. (2020). Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, Springer, pp 405–421.
Zurück zum Zitat Mu, J., De Mello, S., Yu, Z., Vasconcelos, N., Wang, X., Kautz, J., & Liu, S. (2022). Coordgan: Self-supervised dense correspondences emerge from gans. In CVPR. Mu, J., De Mello, S., Yu, Z., Vasconcelos, N., Wang, X., Kautz, J., & Liu, S. (2022). Coordgan: Self-supervised dense correspondences emerge from gans. In CVPR.
Zurück zum Zitat Niemeyer, M., & Geiger, A. (2021). Giraffe: Representing scenes as compositional generative neural feature fields. In CVPR. Niemeyer, M., & Geiger, A. (2021). Giraffe: Representing scenes as compositional generative neural feature fields. In CVPR.
Zurück zum Zitat Noguchi, A., Sun, X., Lin, S., & Harada, T. (2021). Neural articulated radiance field. In ICCV. Noguchi, A., Sun, X., Lin, S., & Harada, T. (2021). Neural articulated radiance field. In ICCV.
Zurück zum Zitat Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J. J., & Kemelmacher-Shlizerman, I. (2021). StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation. In CVPR. Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J. J., & Kemelmacher-Shlizerman, I. (2021). StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation. In CVPR.
Zurück zum Zitat Pan, X., Dai, B., Liu, Z., Loy, C. C., & Luo, P. (2021). Do 2d gans know 3d shape? unsupervised 3d shape reconstruction from 2d image gans. In ICLR Pan, X., Dai, B., Liu, Z., Loy, C. C., & Luo, P. (2021). Do 2d gans know 3d shape? unsupervised 3d shape reconstruction from 2d image gans. In ICLR
Zurück zum Zitat Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D. B., Seitz, S. M., & Martin-Brualla, R. (2021a). Nerfies: Deformable neural radiance fields. In ICCV. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D. B., Seitz, S. M., & Martin-Brualla, R. (2021a). Nerfies: Deformable neural radiance fields. In ICCV.
Zurück zum Zitat Park, K., Sinha, U., Barron, J. T., Bouaziz, S., Goldman, D. B., Seitz, S. M., & Martin-Brualla, R. (2021b). Nerfies: Deformable neural radiance fields. In ICCV. Park, K., Sinha, U., Barron, J. T., Bouaziz, S., Goldman, D. B., Seitz, S. M., & Martin-Brualla, R. (2021b). Nerfies: Deformable neural radiance fields. In ICCV.
Zurück zum Zitat Park, K., Sinha, U., Hedman, P., Barron, J. T., Bouaziz, S., Goldman, D. B., Martin-Brualla, R., & Seitz, S. M. (2021c). Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields. TOG 40(6). Park, K., Sinha, U., Hedman, P., Barron, J. T., Bouaziz, S., Goldman, D. B., Martin-Brualla, R., & Seitz, S. M. (2021c). Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields. TOG 40(6).
Zurück zum Zitat Park, T., Zhu, J. Y., Wang, O., Lu, J., Shechtman, E., Efros, A. A., & Zhang, R. (2020). Swapping autoencoder for deep image manipulation. In NIPS. Park, T., Zhu, J. Y., Wang, O., Lu, J., Shechtman, E., Efros, A. A., & Zhang, R. (2020). Swapping autoencoder for deep image manipulation. In NIPS.
Zurück zum Zitat Peebles, W., Zhu, J. Y., Zhang, R., Torralba, A., Efros, A., & Shechtman, E. (2022). Gan-supervised dense visual alignment. In CVPR. Peebles, W., Zhu, J. Y., Zhang, R., Torralba, A., Efros, A., & Shechtman, E. (2022). Gan-supervised dense visual alignment. In CVPR.
Zurück zum Zitat Perez, E., Strub, F., De Vries, H., Dumoulin, V., & Courville, A. (2018). Film: Visual reasoning with a general conditioning layer. In AAAI, vol 32. Perez, E., Strub, F., De Vries, H., Dumoulin, V., & Courville, A. (2018). Film: Visual reasoning with a general conditioning layer. In AAAI, vol 32.
Zurück zum Zitat Pumarola, A., Corona, E., Pons-Moll, G., & Moreno-Noguer, F. (2020). D-NeRF: Neural Radiance Fields for Dynamic Scenes. In CVPR. Pumarola, A., Corona, E., Pons-Moll, G., & Moreno-Noguer, F. (2020). D-NeRF: Neural Radiance Fields for Dynamic Scenes. In CVPR.
Zurück zum Zitat Qi, C., Su, H., Mo, K., & Guibas, L. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In CVPR, pp 77–85 Qi, C., Su, H., Mo, K., & Guibas, L. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In CVPR, pp 77–85
Zurück zum Zitat Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, Y., Shapiro, S., & Cohen-Or, D. (2021). Encoding in style: a stylegan encoder for image-to-image translation. In CVPR. Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, Y., Shapiro, S., & Cohen-Or, D. (2021). Encoding in style: a stylegan encoder for image-to-image translation. In CVPR.
Zurück zum Zitat Sahillioglu, Y. (2019). Recent advances in shape correspondence. The Visual Computer, 36, 1705–1721.CrossRef Sahillioglu, Y. (2019). Recent advances in shape correspondence. The Visual Computer, 36, 1705–1721.CrossRef
Zurück zum Zitat Schwarz, K., Liao, Y., Niemeyer, M., & Geiger, A. (2020). Graf: Generative radiance fields for 3d-aware image synthesis. In NIPS. Schwarz, K., Liao, Y., Niemeyer, M., & Geiger, A. (2020). Graf: Generative radiance fields for 3d-aware image synthesis. In NIPS.
Zurück zum Zitat Shen, Y., Yang, C., Tang, X., & Zhou, B. (2020). Interfacegan: Interpreting the disentangled face representation learned by gans. PAMI PP. Shen, Y., Yang, C., Tang, X., & Zhou, B. (2020). Interfacegan: Interpreting the disentangled face representation learned by gans. PAMI PP.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In CoRR, arXiv:1409.1556. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In CoRR, arXiv:​1409.​1556.
Zurück zum Zitat Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B., & Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. In NIPS. Sitzmann, V., Martel, J. N., Bergman, A. W., Lindell, D. B., & Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. In NIPS.
Zurück zum Zitat Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains. In NIPS. Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., & Ng, R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains. In NIPS.
Zurück zum Zitat Teed, Z., & Deng, J. (2020). Raft: Recurrent all-pairs field transforms for optical flow. In ECCV. Teed, Z., & Deng, J. (2020). Raft: Recurrent all-pairs field transforms for optical flow. In ECCV.
Zurück zum Zitat Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-Brualla, R., Simon, T., Saragih, J., Nießner, M., Pandey, R., Fanello, S., Wetzstein, G., Zhu, J. Y., Theobalt, C., Agrawala, M., Shechtman, E., Goldman, D. B., & Zollhöfer, M. (2020). State of the Art on Neural Rendering. Computer Graphics Forum. Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-Brualla, R., Simon, T., Saragih, J., Nießner, M., Pandey, R., Fanello, S., Wetzstein, G., Zhu, J. Y., Theobalt, C., Agrawala, M., Shechtman, E., Goldman, D. B., & Zollhöfer, M. (2020). State of the Art on Neural Rendering. Computer Graphics Forum.
Zurück zum Zitat Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., & Cohen-Or, D. (2021). Designing an encoder for stylegan image manipulation. arXiv. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., & Cohen-Or, D. (2021). Designing an encoder for stylegan image manipulation. arXiv.
Zurück zum Zitat Tritrong, N., Rewatbowornwong, P., & Suwajanakorn, S. (2021). Repurposing gans for one-shot semantic part segmentation. In CVPR. Tritrong, N., Rewatbowornwong, P., & Suwajanakorn, S. (2021). Repurposing gans for one-shot semantic part segmentation. In CVPR.
Zurück zum Zitat Truong, P., Danelljan, M., Gool, L. V., & Timofte, R. (2020a). GOCor: Bringing globally optimized correspondence volumes into your neural network. In NIPS. Truong, P., Danelljan, M., Gool, L. V., & Timofte, R. (2020a). GOCor: Bringing globally optimized correspondence volumes into your neural network. In NIPS.
Zurück zum Zitat Truong, P., Danelljan, M., & Timofte, R. (2020b). Glu-net: Global-local universal network for dense flow and correspondences. In CVPR, pp 6257–6267. Truong, P., Danelljan, M., & Timofte, R. (2020b). Glu-net: Global-local universal network for dense flow and correspondences. In CVPR, pp 6257–6267.
Zurück zum Zitat Truong, P., Danelljan, M., Gool, L. V., & Timofte, R. (2021). Learning accurate dense correspondences and when to trust them. In CVPR, pp 5710–5720. Truong, P., Danelljan, M., Gool, L. V., & Timofte, R. (2021). Learning accurate dense correspondences and when to trust them. In CVPR, pp 5710–5720.
Zurück zum Zitat Wang, X., Bo, L., & Fuxin, L. (2019a). Adaptive wing loss for robust face alignment via heatmap regression. In ICCV Wang, X., Bo, L., & Fuxin, L. (2019a). Adaptive wing loss for robust face alignment via heatmap regression. In ICCV
Zurück zum Zitat Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M., & Solomon, J. (2019). Dynamic graph cnn for learning on point clouds. TOG, 38, 1–12. Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M., & Solomon, J. (2019). Dynamic graph cnn for learning on point clouds. TOG, 38, 1–12.
Zurück zum Zitat Wang, Z., Bagautdinov, T., Lombardi, S., Simon, T., Saragih, J., Hodgins, J., & Zollhofer, M. (2021). Learning compositional radiance fields of dynamic human heads. In CVPR, pp 5704–5713. Wang, Z., Bagautdinov, T., Lombardi, S., Simon, T., Saragih, J., Hodgins, J., & Zollhofer, M. (2021). Learning compositional radiance fields of dynamic human heads. In CVPR, pp 5704–5713.
Zurück zum Zitat Wood, E., Baltrušaitis, T., Hewitt, C., Dziadzio, S., Johnson, M., Estellers, V., Cashman, T. J., & Shotton, J. (2021). Fake it till you make it: Face analysis in the wild using synthetic data alone. In Int. Conf. Comput. Vis. Wood, E., Baltrušaitis, T., Hewitt, C., Dziadzio, S., Johnson, M., Estellers, V., Cashman, T. J., & Shotton, J. (2021). Fake it till you make it: Face analysis in the wild using synthetic data alone. In Int. Conf. Comput. Vis.
Zurück zum Zitat Xu, J., & Wang, X. (2021). Rethinking self-supervised correspondence learning: A video frame-level similarity perspective. arXiv. Xu, J., & Wang, X. (2021). Rethinking self-supervised correspondence learning: A video frame-level similarity perspective. arXiv.
Zurück zum Zitat Yang, G., Belongie, S., Hariharan, B., & Koltun, V. (2021). Geometry processing with neural fields. In Thirty-Fifth Conference on Neural Information Processing Systems. Yang, G., Belongie, S., Hariharan, B., & Koltun, V. (2021). Geometry processing with neural fields. In Thirty-Fifth Conference on Neural Information Processing Systems.
Zurück zum Zitat Yang, S., Jiang, L., Liu, Z., & Loy, C. C. (2022). Unsupervised image-to-image translation with generative prior. In CVPR. Yang, S., Jiang, L., Liu, Z., & Loy, C. C. (2022). Unsupervised image-to-image translation with generative prior. In CVPR.
Zurück zum Zitat Yu, A., Ye, V., Tancik, M., & Kanazawa, A. (2021). pixelnerf: Neural radiance fields from one or few images. In CVPR, pp 4578–4587. Yu, A., Ye, V., Tancik, M., & Kanazawa, A. (2021). pixelnerf: Neural radiance fields from one or few images. In CVPR, pp 4578–4587.
Zurück zum Zitat Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23, 1499–1503.CrossRefADS Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23, 1499–1503.CrossRefADS
Zurück zum Zitat Zhang, K., Riegler, G., Snavely, N., & Koltun, V. (2020). Nerf++: Analyzing and improving neural radiance fields. arXiv. Zhang, K., Riegler, G., Snavely, N., & Koltun, V. (2020). Nerf++: Analyzing and improving neural radiance fields. arXiv.
Zurück zum Zitat Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In CVPR. Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In CVPR.
Zurück zum Zitat Zhang, W., Sun, J., & Tang, X. (2008). Cat head detection - how to effectively exploit shape and texture features. In ECCV. Zhang, W., Sun, J., & Tang, X. (2008). Cat head detection - how to effectively exploit shape and texture features. In ECCV.
Zurück zum Zitat Zhang, Y., Chen, W., Ling, H., Gao, J., Zhang, Y., Torralba, A., & Fidler, S. (2021a). Image gans meet differentiable rendering for inverse graphics and interpretable 3d neural rendering. In ICLR Zhang, Y., Chen, W., Ling, H., Gao, J., Zhang, Y., Torralba, A., & Fidler, S. (2021a). Image gans meet differentiable rendering for inverse graphics and interpretable 3d neural rendering. In ICLR
Zurück zum Zitat Zhang, Y., Ling, H., Gao, J., Yin, K., Lafleche, J. F., Barriuso, A., Torralba, A., & Fidler, S. (2021b). Datasetgan: Efficient labeled data factory with minimal human effort. In CVPR. Zhang, Y., Ling, H., Gao, J., Yin, K., Lafleche, J. F., Barriuso, A., Torralba, A., & Fidler, S. (2021b). Datasetgan: Efficient labeled data factory with minimal human effort. In CVPR.
Zurück zum Zitat Zheng, Y., Abrevaya, V. F., Bühler, M. C., Chen, X., Black, M. J., & Hilliges, O. (2022). I M Avatar: Implicit morphable head avatars from videos. In CVPR. Zheng, Y., Abrevaya, V. F., Bühler, M. C., Chen, X., Black, M. J., & Hilliges, O. (2022). I M Avatar: Implicit morphable head avatars from videos. In CVPR.
Zurück zum Zitat Zheng, Z., Yu, T., Dai, Q., & Liu, Y. (2021). Deep implicit templates for 3d shape representation. In CVPR, pp 1429–1439. Zheng, Z., Yu, T., Dai, Q., & Liu, Y. (2021). Deep implicit templates for 3d shape representation. In CVPR, pp 1429–1439.
Zurück zum Zitat Zhou, P., Xie, L., Ni, B., & Tian, Q. (2021). CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. arXiv:2110.09788. Zhou, P., Xie, L., Ni, B., & Tian, Q. (2021). CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. arXiv:​2110.​09788.
Zurück zum Zitat Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q., & Efros, A. A. (2016). Learning dense correspondence via 3d-guided cycle consistency. In CVPR, pp 117–126 Zhou, T., Krähenbühl, P., Aubry, M., Huang, Q., & Efros, A. A. (2016). Learning dense correspondence via 3d-guided cycle consistency. In CVPR, pp 117–126
Metadaten
Titel
Correspondence Distillation from NeRF-Based GAN
verfasst von
Yushi Lan
Chen Change Loy
Bo Dai
Publikationsdatum
25.09.2023
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 3/2024
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-023-01903-w

Weitere Artikel der Ausgabe 3/2024

International Journal of Computer Vision 3/2024 Zur Ausgabe

Premium Partner