Skip to main content
Top
Published in: Experimental Mechanics 4/2018

12-03-2018

Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries

Authors: J. Xu, Y. Jia, B. Liu, H. Zhao, H. Yu, J. Li, S. Yin

Published in: Experimental Mechanics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two governing factors that influence the electrochemical behaviors of lithium-ion batteries (LIBs), namely, state of charge (SOC) and state of health (SOH), are constantly interchanged, thus hindering the understanding of the mechanical integrity of LIBs. This study investigates the electrochemical failure of LIBs with various SOHs and SOCs subjected to abusive mechanical loading. Comprehensive experiments on LiNi0.8CoO15Al0.05O2 (NCA) LIB show that SOH reduction leads to structural stiffness and that the change trend varies with SOC value. Low SOH, however, may mitigate this phenomenon. Electrochemical failure strain at short circuit has no relationship with SOC or SOH, whereas failure stress increases with the increase of SOC value. Experiments on three types of batteries, namely, NCA, LiCoO2 (LCO), and LiFePO4 (LFP) batteries, indicate that their mechanical behaviors share similar SOH-dependency properties. SOH also significantly influences failure stress, temperature increase, and stiffness, whereas its effect on failure strain is minimal. Results may provide valuable insights for the fundamental understanding of the electrochemically and mechanically coupled integrity of LIBs and establish a solid foundation for LIB crash-safety design in electric vehicles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRef Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRef
2.
go back to reference Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430CrossRef Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430CrossRef
3.
go back to reference Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35CrossRef Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35CrossRef
4.
go back to reference Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190–193CrossRef Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190–193CrossRef
5.
go back to reference Sun Y-K, Myung S-T, Park B-C, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8(4):320–324CrossRef Sun Y-K, Myung S-T, Park B-C, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8(4):320–324CrossRef
6.
go back to reference Goodenough JB, Kim Y (2010) Challenges for rechargeable li batteries. Chem Mater 22(3):587–603CrossRef Goodenough JB, Kim Y (2010) Challenges for rechargeable li batteries. Chem Mater 22(3):587–603CrossRef
7.
go back to reference Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23(15):1695–1715CrossRef Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23(15):1695–1715CrossRef
8.
go back to reference Vikström H, Davidsson S, Höök M (2013) Lithium availability and future production outlooks. Appl Energy 110:252–266CrossRef Vikström H, Davidsson S, Höök M (2013) Lithium availability and future production outlooks. Appl Energy 110:252–266CrossRef
9.
go back to reference Ovrum E, Bergh TF (2015) Modelling lithium-ion battery hybrid ship crane operation. Appl Energy 152:162–172CrossRef Ovrum E, Bergh TF (2015) Modelling lithium-ion battery hybrid ship crane operation. Appl Energy 152:162–172CrossRef
10.
go back to reference Chen J, Liu J, Qi Y, Sun T, Li X (2013) Unveiling the roles of binder in the mechanical integrity of electrodes for lithium-ion batteries. J Electrochem Soc 160(9):A1502–A1509CrossRef Chen J, Liu J, Qi Y, Sun T, Li X (2013) Unveiling the roles of binder in the mechanical integrity of electrodes for lithium-ion batteries. J Electrochem Soc 160(9):A1502–A1509CrossRef
11.
go back to reference Ramdon S, Bhushan B (2014) Nanomechanical characterization and mechanical integrity of unaged and aged Li-ion battery cathodes. J Power Sources 246:219–224CrossRef Ramdon S, Bhushan B (2014) Nanomechanical characterization and mechanical integrity of unaged and aged Li-ion battery cathodes. J Power Sources 246:219–224CrossRef
12.
go back to reference Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef
13.
go back to reference Zhang X, Shyy W, Marie Sastry A (2007) Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc 154(10):A910–A916CrossRef Zhang X, Shyy W, Marie Sastry A (2007) Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc 154(10):A910–A916CrossRef
14.
go back to reference Golmon S, Maute K, Dunn ML (2009) Numerical modeling of electrochemical–mechanical interactions in lithium polymer batteries. Comput Struct 87(23–24):1567–1579CrossRef Golmon S, Maute K, Dunn ML (2009) Numerical modeling of electrochemical–mechanical interactions in lithium polymer batteries. Comput Struct 87(23–24):1567–1579CrossRef
15.
go back to reference Cai L, White RE (2011) Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. J Power Sources 196(14):5985–5989CrossRef Cai L, White RE (2011) Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. J Power Sources 196(14):5985–5989CrossRef
16.
go back to reference Greve L, Fehrenbach C (2012) Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells. J Power Sources 214:377–385CrossRef Greve L, Fehrenbach C (2012) Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells. J Power Sources 214:377–385CrossRef
17.
go back to reference Sahraei E, Meier J, Wierzbicki T (2014) Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells. J Power Sources 247:503–516CrossRef Sahraei E, Meier J, Wierzbicki T (2014) Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells. J Power Sources 247:503–516CrossRef
18.
go back to reference Sahraei E, Campbell J, Wierzbicki T (2012) Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions. J Power Sources 220:360–372CrossRef Sahraei E, Campbell J, Wierzbicki T (2012) Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions. J Power Sources 220:360–372CrossRef
19.
go back to reference Sahraei E, Hill R, Wierzbicki T (2012) Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity. J Power Sources 201:307–321CrossRef Sahraei E, Hill R, Wierzbicki T (2012) Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity. J Power Sources 201:307–321CrossRef
20.
go back to reference Ali MY, Lai WJ, Pan J (2013) Computational models for simulations of lithium-ion battery cells under constrained compression tests. J Power Sources 242:325–340CrossRef Ali MY, Lai WJ, Pan J (2013) Computational models for simulations of lithium-ion battery cells under constrained compression tests. J Power Sources 242:325–340CrossRef
21.
go back to reference Wierzbicki T, Sahraei E (2013) Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. J Power Sources 241:467–476CrossRef Wierzbicki T, Sahraei E (2013) Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. J Power Sources 241:467–476CrossRef
22.
go back to reference Lai W-J, Ali MY, Pan J (2014) Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions. J Power Sources 245:609–623CrossRef Lai W-J, Ali MY, Pan J (2014) Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions. J Power Sources 245:609–623CrossRef
23.
go back to reference Ali MY, Lai WJ, Pan J (2015) Computational models for simulation of a lithium-ion battery module specimen under punch indentation. J Power Sources 273:448–459CrossRef Ali MY, Lai WJ, Pan J (2015) Computational models for simulation of a lithium-ion battery module specimen under punch indentation. J Power Sources 273:448–459CrossRef
24.
go back to reference Cannarella J, Arnold CB (2014) State of health and charge measurements in lithium-ion batteries using mechanical stress. J Power Sources 269:7–14CrossRef Cannarella J, Arnold CB (2014) State of health and charge measurements in lithium-ion batteries using mechanical stress. J Power Sources 269:7–14CrossRef
25.
go back to reference Cannarella J, Leng CZ, Arnold CB (2014) On the coupling between stress and voltage in lithium-ion pouch cells. Proc of SPIE 9115:91150K Cannarella J, Leng CZ, Arnold CB (2014) On the coupling between stress and voltage in lithium-ion pouch cells. Proc of SPIE 9115:91150K
26.
go back to reference Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7(5):A93–A96CrossRef Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7(5):A93–A96CrossRef
27.
go back to reference Zhao K, Pharr M, Cai S, Vlassak JJ, Suo Z (2011) Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J Am Ceram Soc 94:s226–s235CrossRef Zhao K, Pharr M, Cai S, Vlassak JJ, Suo Z (2011) Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J Am Ceram Soc 94:s226–s235CrossRef
28.
go back to reference Liu XH, Wang JW, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh SA, Davydov AV, Mao SX, Picraux ST, Zhang S, Li J, Zhu T, Huang JY (2012) In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat Nanotechnol 7(11):749–756CrossRef Liu XH, Wang JW, Huang S, Fan F, Huang X, Liu Y, Krylyuk S, Yoo J, Dayeh SA, Davydov AV, Mao SX, Picraux ST, Zhang S, Li J, Zhu T, Huang JY (2012) In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat Nanotechnol 7(11):749–756CrossRef
29.
go back to reference Pharr M, Zhao K, Wang X, Suo Z, Vlassak JJ (2012) Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. Nano Lett 12(9):5039–5047CrossRef Pharr M, Zhao K, Wang X, Suo Z, Vlassak JJ (2012) Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. Nano Lett 12(9):5039–5047CrossRef
30.
go back to reference Huang S, Fan F, Li J, Zhang S, Zhu T (2013) Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater 61(12):4354–4364CrossRef Huang S, Fan F, Li J, Zhang S, Zhu T (2013) Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater 61(12):4354–4364CrossRef
31.
go back to reference Ryu I, Lee SW, Gao H, Cui Y, Nix WD (2014) Microscopic model for fracture of crystalline Si nanopillars during lithiation. J Power Sources 255:274–282CrossRef Ryu I, Lee SW, Gao H, Cui Y, Nix WD (2014) Microscopic model for fracture of crystalline Si nanopillars during lithiation. J Power Sources 255:274–282CrossRef
32.
go back to reference Berla LA, Lee SW, Cui Y, Nix WD (2015) Mechanical behavior of electrochemically lithiated silicon. J Power Sources 273:41–51CrossRef Berla LA, Lee SW, Cui Y, Nix WD (2015) Mechanical behavior of electrochemically lithiated silicon. J Power Sources 273:41–51CrossRef
33.
go back to reference Sethuraman VA, Chon MJ, Shimshak M, Van Winkle N, Guduru PR (2010) In situ measurement of biaxial modulus of Si anode for Li-ion batteries. Electrochem Commun 12(11):1614–1617CrossRef Sethuraman VA, Chon MJ, Shimshak M, Van Winkle N, Guduru PR (2010) In situ measurement of biaxial modulus of Si anode for Li-ion batteries. Electrochem Commun 12(11):1614–1617CrossRef
34.
go back to reference Amanieu H-Y, Aramfard M, Rosato D, Batista L, Rabe U, Lupascu DC (2015) Mechanical properties of commercial Mn2O4 cathode under different states of charge. Acta Mater 89:153–162CrossRef Amanieu H-Y, Aramfard M, Rosato D, Batista L, Rabe U, Lupascu DC (2015) Mechanical properties of commercial Mn2O4 cathode under different states of charge. Acta Mater 89:153–162CrossRef
35.
go back to reference Tao X, Du J, Sun Y, Zhou S, Xia Y, Huang H, Gan Y, Zhang W, Li X (2013) Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv Funct Mater 23(37):4745–4751 Tao X, Du J, Sun Y, Zhou S, Xia Y, Huang H, Gan Y, Zhang W, Li X (2013) Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv Funct Mater 23(37):4745–4751
36.
go back to reference Wang X, Sakiyama Y, Takahashi Y, Yamada C, Naito H, Segami G, Hironaka T, Hayashi E, Kibe K (2007) Electrode structure analysis and surface characterization for lithium-ion cells simulated low-earth-orbit satellite operation: I Electrochemical behavior and structure analysis. J Power Sources 167(1):162–170CrossRef Wang X, Sakiyama Y, Takahashi Y, Yamada C, Naito H, Segami G, Hironaka T, Hayashi E, Kibe K (2007) Electrode structure analysis and surface characterization for lithium-ion cells simulated low-earth-orbit satellite operation: I Electrochemical behavior and structure analysis. J Power Sources 167(1):162–170CrossRef
37.
go back to reference Wang Y, Yan X, Bie X, Fu Q, Du F, Chen G, Wang C, Wei Y (2014) Effects of aging in electrolyte on the structural and electrochemical properties of the Li[Li0.18Ni0.15Co0.15Mn0.52]O2 cathode material. Electrochim Acta 116:250–257CrossRef Wang Y, Yan X, Bie X, Fu Q, Du F, Chen G, Wang C, Wei Y (2014) Effects of aging in electrolyte on the structural and electrochemical properties of the Li[Li0.18Ni0.15Co0.15Mn0.52]O2 cathode material. Electrochim Acta 116:250–257CrossRef
38.
go back to reference Wang X, Hironaka T, Hayashi E, Yamada C, Naito H, Segami G, Sakiyama Y, Takahashi Y, Kibe K (2007) Electrode structure analysis and surface characterization for lithium-ion cells simulated low-earth-orbit satellite operation: II: Electrode surface characterization. J Power Sources 168(2):484–492CrossRef Wang X, Hironaka T, Hayashi E, Yamada C, Naito H, Segami G, Sakiyama Y, Takahashi Y, Kibe K (2007) Electrode structure analysis and surface characterization for lithium-ion cells simulated low-earth-orbit satellite operation: II: Electrode surface characterization. J Power Sources 168(2):484–492CrossRef
39.
go back to reference Liu P, Wang J, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2010) Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J Electrochem Soc 157(4):A499–A507CrossRef Liu P, Wang J, Hicks-Garner J, Sherman E, Soukiazian S, Verbrugge M, Tataria H, Musser J, Finamore P (2010) Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J Electrochem Soc 157(4):A499–A507CrossRef
40.
go back to reference Braithwaite JW, Gonzales A, Nagasubramanian G, Lucero SJ, Peebles DE, Ohlhausen JA, Cieslak WR (1999) Corrosion of lithium-ion battery current collectors. J Electrochem Soc 146(2):448–456CrossRef Braithwaite JW, Gonzales A, Nagasubramanian G, Lucero SJ, Peebles DE, Ohlhausen JA, Cieslak WR (1999) Corrosion of lithium-ion battery current collectors. J Electrochem Soc 146(2):448–456CrossRef
41.
go back to reference Xu J, Liu BH, Hu DY (2016) State of charge dependent mechanical integrity behavior of 18650 Lithium-ion batteries. Sci Rep 6:11CrossRef Xu J, Liu BH, Hu DY (2016) State of charge dependent mechanical integrity behavior of 18650 Lithium-ion batteries. Sci Rep 6:11CrossRef
42.
go back to reference Xu J, Liu BH, Wang LB, Shang S (2015) Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing. Eng Fail Anal 53:97–110CrossRef Xu J, Liu BH, Wang LB, Shang S (2015) Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing. Eng Fail Anal 53:97–110CrossRef
43.
go back to reference Xu J, Liu BH, Wang XY, Hu DY (2016) Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies. Appl Energy 172:180–189CrossRef Xu J, Liu BH, Wang XY, Hu DY (2016) Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies. Appl Energy 172:180–189CrossRef
45.
go back to reference Liu YJ, Li XH, Guo HJ, Wang ZX, Hu QY, Peng WJ, Yang Y (2009) Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature. J Power Sources 189(1):721–725CrossRef Liu YJ, Li XH, Guo HJ, Wang ZX, Hu QY, Peng WJ, Yang Y (2009) Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature. J Power Sources 189(1):721–725CrossRef
46.
go back to reference Petit M, Prada E, Sauvant-Moynot V (2016) Development of an empirical aging model for Li-ion batteries and application to assess the impact of vehicle-to-grid strategies on battery lifetime. Appl Energy 172:398–407CrossRef Petit M, Prada E, Sauvant-Moynot V (2016) Development of an empirical aging model for Li-ion batteries and application to assess the impact of vehicle-to-grid strategies on battery lifetime. Appl Energy 172:398–407CrossRef
47.
go back to reference Jeong WT, Lee KS (2002) Electrochemical cycling behavior of LiCoO2 cathode prepared by mechanical alloying of hydroxides. J Power Sources 104(2):195–200CrossRef Jeong WT, Lee KS (2002) Electrochemical cycling behavior of LiCoO2 cathode prepared by mechanical alloying of hydroxides. J Power Sources 104(2):195–200CrossRef
48.
go back to reference Osaka T, Nakade S, Rajamaki M, Momma T (2003) Influence of capacity fading on commercial lithium-ion battery impedance. J Power Sources 119:929–933CrossRef Osaka T, Nakade S, Rajamaki M, Momma T (2003) Influence of capacity fading on commercial lithium-ion battery impedance. J Power Sources 119:929–933CrossRef
49.
go back to reference Yang L, Cheng X, Gao Y, Ma Y, Zuo P, Du C, Cui Y, Guan T, Lou S, Wang F, Fei W, Yin G (2014) Lithium deposition on graphite anode during long-term cycles and the effect on capacity loss. RSC Adv 4(50):26335–26341CrossRef Yang L, Cheng X, Gao Y, Ma Y, Zuo P, Du C, Cui Y, Guan T, Lou S, Wang F, Fei W, Yin G (2014) Lithium deposition on graphite anode during long-term cycles and the effect on capacity loss. RSC Adv 4(50):26335–26341CrossRef
50.
go back to reference Dahéron L, Dedryvère R, Martinez H, Ménétrier M, Denage C, Delmas C, Gonbeau D (2008) Electron transfer mechanisms upon lithium Deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem Mater 20(2):583–590CrossRef Dahéron L, Dedryvère R, Martinez H, Ménétrier M, Denage C, Delmas C, Gonbeau D (2008) Electron transfer mechanisms upon lithium Deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem Mater 20(2):583–590CrossRef
51.
go back to reference Kim JH, Woo SC, Park MS, Kim KJ, Yim T, Kim JS, Kim YJ (2013) Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage. J Power Sources 229:190–197CrossRef Kim JH, Woo SC, Park MS, Kim KJ, Yim T, Kim JS, Kim YJ (2013) Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage. J Power Sources 229:190–197CrossRef
52.
go back to reference Fu R, Xiao M, Choe S-Y (2013) Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery. J Power Sources 224:211–224CrossRef Fu R, Xiao M, Choe S-Y (2013) Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery. J Power Sources 224:211–224CrossRef
Metadata
Title
Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
Authors
J. Xu
Y. Jia
B. Liu
H. Zhao
H. Yu
J. Li
S. Yin
Publication date
12-03-2018
Publisher
Springer US
Published in
Experimental Mechanics / Issue 4/2018
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-018-0380-9

Other articles of this Issue 4/2018

Experimental Mechanics 4/2018 Go to the issue

Premium Partners