Skip to main content
Top
Published in: Wireless Networks 4/2019

09-07-2018

Coverage and connectivity aware energy efficient scheduling in target based wireless sensor networks: an improved genetic algorithm based approach

Authors: Subash Harizan, Pratyay Kuila

Published in: Wireless Networks | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Energy efficient scheduling of sensor nodes is one of the most efficient techniques to extend the lifetime of the wireless sensor networks (WSNs). Instead of activating all the deployed sensor nodes, a set of sensor nodes are activated or scheduled to monitor the targeted region. While scheduling with lesser number of sensor nodes, coverage and connectivity of the network should be taken care due to the limited sensing and communication range of the sensor nodes. In this paper, we have proposed an improved genetic algorithm (GA) based scheduling for WSNs. An efficient chromosome representation is given and it is shown to generate valid chromosome after crossover and mutation operation. The fitness function is derived with four conflicting objectives, selection of minimum number of sensor nodes, full coverage, connectivity and energy level of the selected sensor nodes. We have introduced a novel mutation operation for better performance and faster convergence of the proposed GA based approaches. We have also formulated the scheduling problem as a Linear Programming. Extensive simulation is performed on various network scenarios by varying number of deployed sensor nodes, target point and network length. We also perform a popular statistical test, analysis of variance followed by post hoc analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
2.
go back to reference Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.CrossRef Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.CrossRef
3.
go back to reference Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). QoS-aware MAC protocols for wireless sensor networks: A survey. Computer Networks, 55(8), 1982–2004.CrossRef Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). QoS-aware MAC protocols for wireless sensor networks: A survey. Computer Networks, 55(8), 1982–2004.CrossRef
4.
go back to reference Kuila, P., & Jana, P. K. (2015). Heap and parameter-based load balanced clustering algorithms for wireless sensor networks. International Journal of Communication Networks and Distributed Systems, 14(4), 413–432.CrossRef Kuila, P., & Jana, P. K. (2015). Heap and parameter-based load balanced clustering algorithms for wireless sensor networks. International Journal of Communication Networks and Distributed Systems, 14(4), 413–432.CrossRef
5.
go back to reference Kuila, P., & Jana, P. K. (2014). A novel differential evolution based clustering algorithm for wireless sensor networks. Applied Soft Computing, 25, 414–425.CrossRef Kuila, P., & Jana, P. K. (2014). A novel differential evolution based clustering algorithm for wireless sensor networks. Applied Soft Computing, 25, 414–425.CrossRef
6.
go back to reference Cardei, I., & Cardei, M. (2008). Energy-efficient connected-coverage in wireless sensor networks. International Journal of Sensor Networks, 3(3), 201–210.CrossRefMATH Cardei, I., & Cardei, M. (2008). Energy-efficient connected-coverage in wireless sensor networks. International Journal of Sensor Networks, 3(3), 201–210.CrossRefMATH
7.
go back to reference Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRef Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRef
8.
go back to reference Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison. Journal of Network and Computer Applications, 35(5), 1508–1536.CrossRef Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison. Journal of Network and Computer Applications, 35(5), 1508–1536.CrossRef
9.
go back to reference Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.CrossRef Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.CrossRef
10.
go back to reference Kuila, P., & Jana, P. K. (2016). Evolutionary computing approaches for clustering and routing in wireless sensor networks. In J. K. Mandal, S. Mukhopadhyay, & T. Pal (Eds.), Handbook of research on natural computing for optimization problems (pp. 246–266). Hershey: IGI Global.CrossRef Kuila, P., & Jana, P. K. (2016). Evolutionary computing approaches for clustering and routing in wireless sensor networks. In J. K. Mandal, S. Mukhopadhyay, & T. Pal (Eds.), Handbook of research on natural computing for optimization problems (pp. 246–266). Hershey: IGI Global.CrossRef
11.
go back to reference Musilek, P., Krömer, P., & Bartoň, T. (2015). Review of nature-inspired methods for wake-up scheduling in wireless sensor networks. Swarm and Evolutionary Computation, 25, 100–118.CrossRef Musilek, P., Krömer, P., & Bartoň, T. (2015). Review of nature-inspired methods for wake-up scheduling in wireless sensor networks. Swarm and Evolutionary Computation, 25, 100–118.CrossRef
12.
go back to reference Renold, A. P., & Chandrakala, S. (2016). Survey on state scheduling-based topology control in unattended wireless sensor networks. Computers & Electrical Engineering, 56, 334–349.CrossRef Renold, A. P., & Chandrakala, S. (2016). Survey on state scheduling-based topology control in unattended wireless sensor networks. Computers & Electrical Engineering, 56, 334–349.CrossRef
13.
go back to reference Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.CrossRef Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.CrossRef
14.
go back to reference Yu, J., Wang, N., Wang, G., & Yu, D. (2013). Connected dominating sets in wireless ad hoc and sensor networks—A comprehensive survey. Computer Communications, 36(2), 121–134.CrossRef Yu, J., Wang, N., Wang, G., & Yu, D. (2013). Connected dominating sets in wireless ad hoc and sensor networks—A comprehensive survey. Computer Communications, 36(2), 121–134.CrossRef
15.
go back to reference Rebai, M., Le berre, M., Snoussi, H., Hnaien, F., & Khoukhi, L. (2015). Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Computers & Operations Research, 59, 11–21.MathSciNetCrossRefMATH Rebai, M., Le berre, M., Snoussi, H., Hnaien, F., & Khoukhi, L. (2015). Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Computers & Operations Research, 59, 11–21.MathSciNetCrossRefMATH
16.
go back to reference Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm for \( k \)-connected relay node placement in wireless sensor networks. In Proceedings of the second international conference on computer and communication technologies (pp. 721–729). Springer. Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm for \( k \)-connected relay node placement in wireless sensor networks. In Proceedings of the second international conference on computer and communication technologies (pp. 721–729). Springer.
17.
go back to reference Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm approach for \( k \)-coverage and \( m \)-connected node placement in target based wireless sensor networks. Computers & Electrical Engineering, 56, 544–556.CrossRef Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm approach for \( k \)-coverage and \( m \)-connected node placement in target based wireless sensor networks. Computers & Electrical Engineering, 56, 544–556.CrossRef
18.
go back to reference Liu, X., & He, D. (2014). Ant colony optimization with greedy migration mechanism for node deployment in wireless sensor networks. Journal of Network and Computer Applications, 39, 310–318.CrossRef Liu, X., & He, D. (2014). Ant colony optimization with greedy migration mechanism for node deployment in wireless sensor networks. Journal of Network and Computer Applications, 39, 310–318.CrossRef
19.
go back to reference Moro, G., & Monti, G. (2012). W-Grid: A scalable and efficient self-organizing infrastructure for multi-dimensional data management, querying and routing in wireless data-centric sensor networks. Journal of Network and Computer Applications, 35(4), 1218–1234.CrossRef Moro, G., & Monti, G. (2012). W-Grid: A scalable and efficient self-organizing infrastructure for multi-dimensional data management, querying and routing in wireless data-centric sensor networks. Journal of Network and Computer Applications, 35(4), 1218–1234.CrossRef
20.
go back to reference Al-Turjman, F. M., Hassanein, H. S., & Ibnkahla, M. (2013). Quantifying connectivity in wireless sensor networks with grid-based deployments. Journal of Network and Computer Applications, 36(1), 368–377.CrossRef Al-Turjman, F. M., Hassanein, H. S., & Ibnkahla, M. (2013). Quantifying connectivity in wireless sensor networks with grid-based deployments. Journal of Network and Computer Applications, 36(1), 368–377.CrossRef
21.
go back to reference Yang, C., & Chin, K.-W. (2017). On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Transactions on Industrial Informatics, 13(1), 27–36.CrossRef Yang, C., & Chin, K.-W. (2017). On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Transactions on Industrial Informatics, 13(1), 27–36.CrossRef
22.
go back to reference Yang, C., & Chin, K.-W. (2014). Novel algorithms for complete targets coverage in energy harvesting wireless sensor networks. IEEE Communications Letters, 18(1), 118–121.MathSciNetCrossRef Yang, C., & Chin, K.-W. (2014). Novel algorithms for complete targets coverage in energy harvesting wireless sensor networks. IEEE Communications Letters, 18(1), 118–121.MathSciNetCrossRef
23.
go back to reference Deif, D., & Gadallah, Y. (2017). An ant colony optimization approach for the deployment of reliable wireless sensor networks. IEEE Access, 5, 10744–10756.CrossRef Deif, D., & Gadallah, Y. (2017). An ant colony optimization approach for the deployment of reliable wireless sensor networks. IEEE Access, 5, 10744–10756.CrossRef
24.
go back to reference Wang, Y., Wu, S., Chen, Z., Gao, X., & Chen, G. (2017). Coverage problem with uncertain properties in wireless sensor networks: A survey. Computer Networks, 123, 200–232.CrossRef Wang, Y., Wu, S., Chen, Z., Gao, X., & Chen, G. (2017). Coverage problem with uncertain properties in wireless sensor networks: A survey. Computer Networks, 123, 200–232.CrossRef
25.
go back to reference Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2017). Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.CrossRef Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2017). Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.CrossRef
26.
go back to reference Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers & Mathematics with Applications, 57(11), 1756–1766.MathSciNetCrossRefMATH Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers & Mathematics with Applications, 57(11), 1756–1766.MathSciNetCrossRefMATH
27.
go back to reference Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc & Sensor Wireless Networks, 1(1–2), 89–124. Zhang, H., & Hou, J. C. (2005). Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc & Sensor Wireless Networks, 1(1–2), 89–124.
28.
go back to reference Lee, J.-W., Choi, B.-S., & Lee, J.-J. (2011). Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones. IEEE Transactions on Industrial Informatics, 7(3), 419–427.CrossRef Lee, J.-W., Choi, B.-S., & Lee, J.-J. (2011). Energy-efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones. IEEE Transactions on Industrial Informatics, 7(3), 419–427.CrossRef
29.
go back to reference Dong, Y., Xu, J., & Zhang, X. (2013). Energy-efficient target coverage algorithm for wireless sensor networks. In IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS), 2013 (pp. 415–416). IEEE. Dong, Y., Xu, J., & Zhang, X. (2013). Energy-efficient target coverage algorithm for wireless sensor networks. In IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS), 2013 (pp. 415–416). IEEE.
30.
go back to reference Sakai, K., Sun, M., Ku, W., Lai, T., & Vasilakos, A. (2015). A framework for the optimal \( k \)-coverage deployment patterns of wireless sensors. IEEE Sensors, 15, 7273–7283.CrossRef Sakai, K., Sun, M., Ku, W., Lai, T., & Vasilakos, A. (2015). A framework for the optimal \( k \)-coverage deployment patterns of wireless sensors. IEEE Sensors, 15, 7273–7283.CrossRef
31.
go back to reference Carrabs, F., Cerulli, R., DAmbrosio, C., & Raiconi, A. (2017). Exact and heuristic approaches for the maximum lifetime problem in sensor networks with coverage and connectivity constraints. RAIRO-Operations Research, 51(3), 607–625.MathSciNetCrossRefMATH Carrabs, F., Cerulli, R., DAmbrosio, C., & Raiconi, A. (2017). Exact and heuristic approaches for the maximum lifetime problem in sensor networks with coverage and connectivity constraints. RAIRO-Operations Research, 51(3), 607–625.MathSciNetCrossRefMATH
32.
go back to reference Lersteau, C., Rossi, A., & Sevaux, M. (2018). Minimum energy target tracking with coverage guarantee in wireless sensor networks. European Journal of Operational Research, 265(3), 882–894.MathSciNetCrossRefMATH Lersteau, C., Rossi, A., & Sevaux, M. (2018). Minimum energy target tracking with coverage guarantee in wireless sensor networks. European Journal of Operational Research, 265(3), 882–894.MathSciNetCrossRefMATH
33.
go back to reference Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
34.
go back to reference Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Energy efficient multipath routing for wireless sensor networks: A genetic algorithm approach. In International conference on advances in computing, communications and informatics (ICACCI), 2016 (pp. 1735–1740). IEEE. Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Energy efficient multipath routing for wireless sensor networks: A genetic algorithm approach. In International conference on advances in computing, communications and informatics (ICACCI), 2016 (pp. 1735–1740). IEEE.
35.
go back to reference Kruppa, J., Lepenies, B., & Jung, K. (2018). A genetic algorithm for simulating correlated binary data from biomedical research. Computers in Biology and Medicine, 92, 1–8.CrossRef Kruppa, J., Lepenies, B., & Jung, K. (2018). A genetic algorithm for simulating correlated binary data from biomedical research. Computers in Biology and Medicine, 92, 1–8.CrossRef
36.
go back to reference Chen, W.-H., Wu, P.-H., & Lin, Y.-L. (2018). Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Applied Energy, 209, 211–223.CrossRef Chen, W.-H., Wu, P.-H., & Lin, Y.-L. (2018). Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Applied Energy, 209, 211–223.CrossRef
37.
go back to reference Gong, X., Plets, D., Tanghe, E., De Pessemier, T., Martens, L., & Joseph, W. (2018). An efficient genetic algorithm for large-scale planning of dense and robust industrial wireless networks. Expert Systems with Applications, 96, 311–329.CrossRef Gong, X., Plets, D., Tanghe, E., De Pessemier, T., Martens, L., & Joseph, W. (2018). An efficient genetic algorithm for large-scale planning of dense and robust industrial wireless networks. Expert Systems with Applications, 96, 311–329.CrossRef
38.
go back to reference Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.CrossRef Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.CrossRef
39.
go back to reference Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRef Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRef
40.
go back to reference Goldberg, D. E. (2006). Genetic algorithms. Bengaluru: Pearson Education India. Goldberg, D. E. (2006). Genetic algorithms. Bengaluru: Pearson Education India.
41.
go back to reference Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering, 41, 177–190.CrossRef Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering, 41, 177–190.CrossRef
42.
go back to reference Singh, D., Kuila, P., & Jana, P. K. (2014). A distributed energy efficient and energy balanced routing algorithm for wireless sensor networks. In 3rd International conference on advances in computing, communications and informatics (ICACCI-2014) (pp. 1657–1663). IEEE . Singh, D., Kuila, P., & Jana, P. K. (2014). A distributed energy efficient and energy balanced routing algorithm for wireless sensor networks. In 3rd International conference on advances in computing, communications and informatics (ICACCI-2014) (pp. 1657–1663). IEEE .
43.
go back to reference Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.MathSciNetCrossRefMATH Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.MathSciNetCrossRefMATH
Metadata
Title
Coverage and connectivity aware energy efficient scheduling in target based wireless sensor networks: an improved genetic algorithm based approach
Authors
Subash Harizan
Pratyay Kuila
Publication date
09-07-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1792-2

Other articles of this Issue 4/2019

Wireless Networks 4/2019 Go to the issue