Skip to main content
Top
Published in: Wireless Networks 6/2020

14-05-2020

Coverage aware face topology structure for wireless sensor network applications

Authors: Ahmed M. Khedr, Zaher Al Aghbari, P V Pravija Raj

Published in: Wireless Networks | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Providing effective sensing coverage of an observation area with reduced set of working nodes for maximum duration of time is an important concern for the development of durable and energy efficient WSN applications. A well-organized network structure can greatly promote such requirements. Motivated by the use of computational geometry in network design, we propose a coverage-aware and efficient planar face topology structure (CAFT) for WSN in this paper. Also, a distributed target tracking algorithm is proposed to run on the proposed face structure. Most of the existing works utilize the face based WSNs which are built by generating planarized graphs using Gabriel graph or Relative neighborhood graph in which all the deployed nodes become a part of the created toplogy. In contrast to this, our proposed distributed topology construction method selects and organizes a subset of nodes into faces, ensures coverage and connectivity while retaining the remaining nodes in sleep mode which can reduce redundant communication that may result in extra energy consumption and cost. The sleep nodes can promote durable service time for the WSN as such nodes can act as replacement nodes in case of node faults and failures, reducing coverage hole formation in the WSN, which is crucial in critical tracking applications. The simulation results and comparison with existing techniques prove that the proposed design is effective in reducing the energy consumption and thereby improves the WSN lifetime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ramson, S. R. J., & Moni, D. J. (2017). Applications of wireless sensor networks—A survey. In 2017 international conference on innovations in electrical, electronics, instrumentation and media technology (ICEEIMT) (pp. 325–329). Ramson, S. R. J., & Moni, D. J. (2017). Applications of wireless sensor networks—A survey. In 2017 international conference on innovations in electrical, electronics, instrumentation and media technology (ICEEIMT) (pp. 325–329).
2.
go back to reference Wu, D., Arkhipov, D. I., Kim, M., Talcott, C. L., Regan, A. C., Mccann, J. A., et al. (2016). ADDSEN: Adaptive data processing and dissemination for drone swarms in urban sensing. IEEE Transactions on Computers, 66, 1–1.MathSciNetMATHCrossRef Wu, D., Arkhipov, D. I., Kim, M., Talcott, C. L., Regan, A. C., Mccann, J. A., et al. (2016). ADDSEN: Adaptive data processing and dissemination for drone swarms in urban sensing. IEEE Transactions on Computers, 66, 1–1.MathSciNetMATHCrossRef
3.
go back to reference Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. Journal of Parallel and Distributed Computing, 73(8), 1049–1065.MATHCrossRef Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. Journal of Parallel and Distributed Computing, 73(8), 1049–1065.MATHCrossRef
4.
go back to reference Zhao, Y., Li, Y., Wu, D., & Ge, N. (2017). Overlapping coalition formation game for resource allocation in network coding aided D2D communications. IEEE Transactions on Mobile Computing, 16(12), 3459–3472.CrossRef Zhao, Y., Li, Y., Wu, D., & Ge, N. (2017). Overlapping coalition formation game for resource allocation in network coding aided D2D communications. IEEE Transactions on Mobile Computing, 16(12), 3459–3472.CrossRef
5.
go back to reference Ali, A., Ming, Y., Chakraborty, S., & Iram, S. (2017). A comprehensive survey on real-time applications of WSN. Future Internet, 9(4), 77.CrossRef Ali, A., Ming, Y., Chakraborty, S., & Iram, S. (2017). A comprehensive survey on real-time applications of WSN. Future Internet, 9(4), 77.CrossRef
6.
go back to reference Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.CrossRef Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.CrossRef
7.
go back to reference Dahane, A., & Berrached, N.-E. (2019). Wireless sensor networks: A survey. Mobile, Wireless and Sensor Networks, 1–24. Dahane, A., & Berrached, N.-E. (2019). Wireless sensor networks: A survey. Mobile, Wireless and Sensor Networks, 1–24.
8.
go back to reference Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless sensor networks. Sensors, 12(11), 14887–14913.CrossRef Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless sensor networks. Sensors, 12(11), 14887–14913.CrossRef
9.
go back to reference Shen, Y., Kim, K. T., Park, J. C., & Youn, H. Y. (2013) Object tracking based on the prediction of trajectory in wireless sensor networks. In 2013 IEEE 10th international conference on high performance computing and communications 2013 IEEE international conference on embedded and ubiquitous computing (pp. 2317–2324). Shen, Y., Kim, K. T., Park, J. C., & Youn, H. Y. (2013) Object tracking based on the prediction of trajectory in wireless sensor networks. In 2013 IEEE 10th international conference on high performance computing and communications 2013 IEEE international conference on embedded and ubiquitous computing (pp. 2317–2324).
10.
go back to reference Lu, H., Li, J., & Guizani, M. (2014). Secure and efficient data transmission for cluster-based wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25, 750–761.CrossRef Lu, H., Li, J., & Guizani, M. (2014). Secure and efficient data transmission for cluster-based wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25, 750–761.CrossRef
11.
go back to reference Osamy, W., Khedr, A. M., Aziz, A., & El-Sawy, A. A. (2018). Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access, 6, 77372–77387.CrossRef Osamy, W., Khedr, A. M., Aziz, A., & El-Sawy, A. A. (2018). Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access, 6, 77372–77387.CrossRef
12.
go back to reference Sun, L., Luo, Y., Yu, Y., & Ding, X. (2014). Voronoi diagram generation algorithm based on Delaunay triangulation. Journal of Software, 9(3), 777–784.CrossRef Sun, L., Luo, Y., Yu, Y., & Ding, X. (2014). Voronoi diagram generation algorithm based on Delaunay triangulation. Journal of Software, 9(3), 777–784.CrossRef
13.
go back to reference Ruhrup, S., & Stojmenovic, I. (2013). Optimizing communication overhead while reducing path length in beaconless georouting with guaranteed delivery for wireless sensor networks. IEEE Transactions on Computers, 62(12), 2440–2453.MathSciNetMATHCrossRef Ruhrup, S., & Stojmenovic, I. (2013). Optimizing communication overhead while reducing path length in beaconless georouting with guaranteed delivery for wireless sensor networks. IEEE Transactions on Computers, 62(12), 2440–2453.MathSciNetMATHCrossRef
14.
go back to reference Bc, P. R. S., & Gc, B. P. (2018). An efficient approach to preserve the network connectivity of WSN by cautiously removing the crossing edges using COLS. Journal of Computer Science and Systems Biology, 11(3). Bc, P. R. S., & Gc, B. P. (2018). An efficient approach to preserve the network connectivity of WSN by cautiously removing the crossing edges using COLS. Journal of Computer Science and Systems Biology, 11(3).
15.
go back to reference Tsai, H.-W., Chu, C.-P., & Chen, T.-S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.CrossRef Tsai, H.-W., Chu, C.-P., & Chen, T.-S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.CrossRef
16.
go back to reference Akl, A., Gayraud, T., & Berthou, P. (2011). A metric for evaluating density level of wireless sensor networks. In IFIP wireless days (WD) (pp. 1–3). Akl, A., Gayraud, T., & Berthou, P. (2011). A metric for evaluating density level of wireless sensor networks. In IFIP wireless days (WD) (pp. 1–3).
17.
go back to reference Cheng, Y. P., Tang, Y. J., & Tsai, M. J. (2014). LF-GFG: location-free greedy-face-greedy routing with guaranteed delivery and lightweight maintenance cost in a wireless sensor network with changing topology. IEEE Transactions on Wireless Communications, 13(12), 70257036. Cheng, Y. P., Tang, Y. J., & Tsai, M. J. (2014). LF-GFG: location-free greedy-face-greedy routing with guaranteed delivery and lightweight maintenance cost in a wireless sensor network with changing topology. IEEE Transactions on Wireless Communications, 13(12), 70257036.
18.
go back to reference Safavi, S. M., Meybodi, M. R., & Esnaashari, M. (2014). Learning automata based face-aware mobicast. Wireless Personal Communications, 77(3), 1923–1933.CrossRef Safavi, S. M., Meybodi, M. R., & Esnaashari, M. (2014). Learning automata based face-aware mobicast. Wireless Personal Communications, 77(3), 1923–1933.CrossRef
19.
go back to reference Bhuiyan, M. Z. A., Wang, G., & Vasilakos, A. V. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetMATHCrossRef Bhuiyan, M. Z. A., Wang, G., & Vasilakos, A. V. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetMATHCrossRef
20.
go back to reference Souza, E. L., Pazzi, R. W., & Nakamura, E. F. (2014). A distributed tracking algorithm for target interception in face-structured sensor networks. In 39th annual IEEE conference on local computer networks. Souza, E. L., Pazzi, R. W., & Nakamura, E. F. (2014). A distributed tracking algorithm for target interception in face-structured sensor networks. In 39th annual IEEE conference on local computer networks.
21.
go back to reference Hsu, J.-M., Chen, C.-C., & Li, C.-C. (2012). POOT: An efficient object tracking strategy based on short-term optimistic predictions for facestructured sensor networks. Computers & Mathematics with Applications, 63(2), 391–406.MATHCrossRef Hsu, J.-M., Chen, C.-C., & Li, C.-C. (2012). POOT: An efficient object tracking strategy based on short-term optimistic predictions for facestructured sensor networks. Computers & Mathematics with Applications, 63(2), 391–406.MATHCrossRef
22.
go back to reference Banerjee, I., Chanak, P., Rahaman, H., & Samanta, T. (2014). Effective fault detection and routing scheme for wireless sensor networks. Computers & Electrical Engineering, 40(2), 291–306.CrossRef Banerjee, I., Chanak, P., Rahaman, H., & Samanta, T. (2014). Effective fault detection and routing scheme for wireless sensor networks. Computers & Electrical Engineering, 40(2), 291–306.CrossRef
23.
go back to reference Płaczek, B. (2014). Communication-aware algorithms for target tracking in wireless sensor networks. In Computer networks communications in computer and information science (pp. 69–78). Płaczek, B. (2014). Communication-aware algorithms for target tracking in wireless sensor networks. In Computer networks communications in computer and information science (pp. 69–78).
24.
go back to reference Khedr, A. M., & Osamy, W. (2010). Nonlinear trajectory discovery of a moving target by a wireless sensor network. Journal of Computing and Informatics, 29(5), 1001–1016. Khedr, A. M., & Osamy, W. (2010). Nonlinear trajectory discovery of a moving target by a wireless sensor network. Journal of Computing and Informatics, 29(5), 1001–1016.
25.
go back to reference Khedr, A. M., & Osamy, W. (2007). Tracking mobile targets using random sensor networks. The Arabian Journal for Science and Engineering, 32(2B), 301–315.MATH Khedr, A. M., & Osamy, W. (2007). Tracking mobile targets using random sensor networks. The Arabian Journal for Science and Engineering, 32(2B), 301–315.MATH
26.
go back to reference Bhuiyan, M. Z. A., Wang, G.-J., Zhang, L., & Peng, Y. (2010). Prediction-based energy-efficient target tracking protocol in wireless sensor networks. Journal of Central South University of Technology, 17(2), 340–348.CrossRef Bhuiyan, M. Z. A., Wang, G.-J., Zhang, L., & Peng, Y. (2010). Prediction-based energy-efficient target tracking protocol in wireless sensor networks. Journal of Central South University of Technology, 17(2), 340–348.CrossRef
27.
go back to reference Bhuiyan, M. Z. A., Wang, G., & Wu, J. (2009). Target tracking with monitor and backup sensors in wireless sensor networks. In Proceedings of 18th international conference on computer communications and networks (pp. 1–6). Bhuiyan, M. Z. A., Wang, G., & Wu, J. (2009). Target tracking with monitor and backup sensors in wireless sensor networks. In Proceedings of 18th international conference on computer communications and networks (pp. 1–6).
28.
go back to reference Wang, G. J., Bhuiyan, M. Z. A., Cao, J. N., & Wu, J. (2014). Detecting movements of a target using face tracking in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 939–949.CrossRef Wang, G. J., Bhuiyan, M. Z. A., Cao, J. N., & Wu, J. (2014). Detecting movements of a target using face tracking in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 939–949.CrossRef
29.
go back to reference Razzaq, A. (2018). An energy efficient and fault tolerant distributed object tracking system using new face-based wireless sensor networks. Master’s thesis, Department of Computer Science, University of Sharjah. Razzaq, A. (2018). An energy efficient and fault tolerant distributed object tracking system using new face-based wireless sensor networks. Master’s thesis, Department of Computer Science, University of Sharjah.
30.
go back to reference Razzaq, A., Khedr, A. M., & Aghbari, Z. A. (2018). A redundancy-aware face structure for wireless sensor networks. In: 2018 8th international conference on computer science and information technology (CSIT). Razzaq, A., Khedr, A. M., & Aghbari, Z. A. (2018). A redundancy-aware face structure for wireless sensor networks. In: 2018 8th international conference on computer science and information technology (CSIT).
31.
go back to reference Khedr, A. M., & Osamy, W. (2011). Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel and Distributed Computing, 71(10), 1318–1326.CrossRef Khedr, A. M., & Osamy, W. (2011). Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel and Distributed Computing, 71(10), 1318–1326.CrossRef
32.
go back to reference Khedr, A. M. (2008). A new mechanism for tracking a mobile target using grid sensor networks. Computing and Informatics, 28, 1001–1021. Khedr, A. M. (2008). A new mechanism for tracking a mobile target using grid sensor networks. Computing and Informatics, 28, 1001–1021.
33.
go back to reference Sarkar, R., & Gao, J. (2013). Differential forms for target tracking and aggregate queries in distributed networks. IEEE/ACM Transactions on Networking, 21(4), 11591172.CrossRef Sarkar, R., & Gao, J. (2013). Differential forms for target tracking and aggregate queries in distributed networks. IEEE/ACM Transactions on Networking, 21(4), 11591172.CrossRef
34.
go back to reference Zhu, H., Li, M., Zhu, Y., & Lionel, M. N. (2009). HERO: Online realtime vehicle tracking. IEEE Transactions on Parallel and Distributed Systems, 20(5), 740–752.CrossRef Zhu, H., Li, M., Zhu, Y., & Lionel, M. N. (2009). HERO: Online realtime vehicle tracking. IEEE Transactions on Parallel and Distributed Systems, 20(5), 740–752.CrossRef
35.
go back to reference Chen, P., Zhong, Z., & He, T. (2011). Bubble trace: Mobile target tracking under insufficient anchor coverage. In Proceedings of IEEE ICDCS (pp. 770–779). Chen, P., Zhong, Z., & He, T. (2011). Bubble trace: Mobile target tracking under insufficient anchor coverage. In Proceedings of IEEE ICDCS (pp. 770–779).
36.
go back to reference Misra, S., & Singh, S. (2012). Localized policy-based target tracking using wireless sensor networks. ACM Transactions on Sensor Networks, 8(3), 1–30.CrossRef Misra, S., & Singh, S. (2012). Localized policy-based target tracking using wireless sensor networks. ACM Transactions on Sensor Networks, 8(3), 1–30.CrossRef
37.
go back to reference Wang, X., Fu, M., & Zhang, H. (2012). Target tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements. IEEE Transactions on Mobile Computing, 11(4), 567–576.CrossRef Wang, X., Fu, M., & Zhang, H. (2012). Target tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements. IEEE Transactions on Mobile Computing, 11(4), 567–576.CrossRef
38.
go back to reference Demigha, O., Hidouci, W., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. IEEE Communications Surveys & Tutorials, 15(3), 1210–1222.CrossRef Demigha, O., Hidouci, W., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. IEEE Communications Surveys & Tutorials, 15(3), 1210–1222.CrossRef
39.
go back to reference Chen, T.-S., Chen, J.-J., & Wu, C.-H. (2016). Distributed object tracking using moving trajectories in wireless sensor networks. Wireless Networks, 22(7), 2415–2437.CrossRef Chen, T.-S., Chen, J.-J., & Wu, C.-H. (2016). Distributed object tracking using moving trajectories in wireless sensor networks. Wireless Networks, 22(7), 2415–2437.CrossRef
40.
go back to reference Abbasi, A. A., Younis, M. F., & Baroudi, U. A. (2013). Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Transactions on Vehicular Technology, 62(1), 256–271.CrossRef Abbasi, A. A., Younis, M. F., & Baroudi, U. A. (2013). Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Transactions on Vehicular Technology, 62(1), 256–271.CrossRef
41.
go back to reference Chouikhi, S., Korbi, I. E., Ghamri-Doudane, Y., & Saidane, L. A. (2014). Fault tolerant multi-channel allocation scheme for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 2438–2443). Chouikhi, S., Korbi, I. E., Ghamri-Doudane, Y., & Saidane, L. A. (2014). Fault tolerant multi-channel allocation scheme for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 2438–2443).
42.
go back to reference Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.CrossRef Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.CrossRef
43.
go back to reference Hwang, R.-H., Wang, C.-C., & Wang, W.-B. (2017). A distributed scheduling algorithm for ieee 802.15.4e wireless sensor networks. Computer Standards & Interfaces, 52, 63–70.CrossRef Hwang, R.-H., Wang, C.-C., & Wang, W.-B. (2017). A distributed scheduling algorithm for ieee 802.15.4e wireless sensor networks. Computer Standards & Interfaces, 52, 63–70.CrossRef
44.
go back to reference Wang, B. (2011). Coverage problems in sensor networks. ACM Computing Surveys, 43(4), 1–53.CrossRef Wang, B. (2011). Coverage problems in sensor networks. ACM Computing Surveys, 43(4), 1–53.CrossRef
45.
go back to reference Beghdad, R., & Lamraoui, A. (2016). Boundary and holes recognition in wireless sensor networks. Journal of Innovation in Digital Ecosystems, 3(1), 1–14.CrossRef Beghdad, R., & Lamraoui, A. (2016). Boundary and holes recognition in wireless sensor networks. Journal of Innovation in Digital Ecosystems, 3(1), 1–14.CrossRef
46.
go back to reference Khedr, A. M., & Osamy, W. (2011). Minimum perimeter coverage of query regions in a heterogeneous wireless sensor network. Information Sciences, 181, 3130–3142.CrossRef Khedr, A. M., & Osamy, W. (2011). Minimum perimeter coverage of query regions in a heterogeneous wireless sensor network. Information Sciences, 181, 3130–3142.CrossRef
47.
go back to reference Xu, Y., & Zeng, Z. (2015). A low redundancy and high coverage node scheduling algorithm for wireless sensor networks. In Communications in computer and information science advances in wireless sensor networks (pp. 42–51). Xu, Y., & Zeng, Z. (2015). A low redundancy and high coverage node scheduling algorithm for wireless sensor networks. In Communications in computer and information science advances in wireless sensor networks (pp. 42–51).
48.
go back to reference Cheng, W., Li, Y., Jiang, Y., & Yin, X. (2016). Regular deployment of wireless sensors to achieve connectivity and information coverage. Sensors, 16(8), 1270.CrossRef Cheng, W., Li, Y., Jiang, Y., & Yin, X. (2016). Regular deployment of wireless sensors to achieve connectivity and information coverage. Sensors, 16(8), 1270.CrossRef
49.
go back to reference Qiu, C., & Shen, H. (2014). A delaunay-based coordinate-free mechanism for full coverage in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 828–839.CrossRef Qiu, C., & Shen, H. (2014). A delaunay-based coordinate-free mechanism for full coverage in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 828–839.CrossRef
50.
go back to reference Hajihoseini Gazestani, A., Shahbazian, R., & Ghorashi, S. A. (2017). Decentralized consensus based target localization in wireless sensor networks. Wireless Personal Communications, 97(3), 3587–3599.CrossRef Hajihoseini Gazestani, A., Shahbazian, R., & Ghorashi, S. A. (2017). Decentralized consensus based target localization in wireless sensor networks. Wireless Personal Communications, 97(3), 3587–3599.CrossRef
51.
go back to reference Hajihoseini, A., & Ghorashi, S. A. (2016). Distributed target localization in wireless sensor networks using diffusion adaptation. Indonesian Journal of Electrical Engineering and Computer Science, 3(3), 512.CrossRef Hajihoseini, A., & Ghorashi, S. A. (2016). Distributed target localization in wireless sensor networks using diffusion adaptation. Indonesian Journal of Electrical Engineering and Computer Science, 3(3), 512.CrossRef
52.
54.
go back to reference Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communications, 85(3), 1689–1699.CrossRef Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communications, 85(3), 1689–1699.CrossRef
55.
go back to reference Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2005). Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks. In First international conference on wireless internet (WICON05). Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2005). Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks. In First international conference on wireless internet (WICON05).
Metadata
Title
Coverage aware face topology structure for wireless sensor network applications
Authors
Ahmed M. Khedr
Zaher Al Aghbari
P V Pravija Raj
Publication date
14-05-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02347-7

Other articles of this Issue 6/2020

Wireless Networks 6/2020 Go to the issue