Skip to main content
Top
Published in: Wireless Networks 6/2020

14-05-2020

Efficient fault-tolerant routing in IoT wireless sensor networks based on path graph flow modeling with Marchenko–Pastur distribution (EFT-PMD)

Authors: S. Sivakumar, P. Vivekanandan

Published in: Wireless Networks | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the internet of things (IoT) based wireless sensor network (WSN), the nodes are scattered to segregate the rapt data in the relevant field of application. In general, sensor nodes of IoT possess heterogeneous property and display cluster-based routing to transmit the data as it is considered as an efficient routing method. When one or more cluster heads (CHs) fail, the sensed data of sensor nodes that are currently serving cannot be forwarded by the faulty CHs. Consequently, data of the IoT application will not be sufficiently sensed by the sink node (gateway). As a result, information processing of this field will be affected profusely. This paper focuses on the development of a paired cluster fault-tolerant disjoint path routing in a path graph and a novel approach to solve this dilemma in polynomial time of the degree of the graph. The objective of this proposed IoT–WSN architecture is to diminish the latency, end-to-end delay as well as energy consumption and thereby improving the performance in terms of throughput and packet delivery ratio. The performance of this proposed method in IoT–WSN network is measured and affirmed using benchmark network simulator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akyildiz, I. F., Su, W., & Sankarasubramaniam, Y. (2002). Wireless sensor networks: A survey. Computer Networks,38, 393–398. Akyildiz, I. F., Su, W., & Sankarasubramaniam, Y. (2002). Wireless sensor networks: A survey. Computer Networks,38, 393–398.
2.
go back to reference Abbasi, A. H., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communication,30, 38–41. Abbasi, A. H., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communication,30, 38–41.
3.
go back to reference Chugh, A., & Panda, S. (2018). Strengthening clustering through relay nodes in sensor networks. Procedia Computer Science,132, 689–695. Chugh, A., & Panda, S. (2018). Strengthening clustering through relay nodes in sensor networks. Procedia Computer Science,132, 689–695.
4.
go back to reference Aziz, B. (2018). Towards a mutation analysis of IoT protocols. Information and Software Technology,100, 183–184. Aziz, B. (2018). Towards a mutation analysis of IoT protocols. Information and Software Technology,100, 183–184.
5.
go back to reference Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communication Surveys and Tutorials,17(4), 2347–2376. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communication Surveys and Tutorials,17(4), 2347–2376.
6.
go back to reference Bauer, M., Boussard, M., Bui, N., Loof, J., Magerkurth, C., Meissner, S., et al. (2013). IoT reference architecture, Chapter 8. Enabling things to talk. Berlin: Springer. Bauer, M., Boussard, M., Bui, N., Loof, J., Magerkurth, C., Meissner, S., et al. (2013). IoT reference architecture, Chapter 8. Enabling things to talk. Berlin: Springer.
7.
go back to reference Mosharaf, C., Muntasir, R. R., & Raouf, B. (2012). ViNEYard: Virtual network embedding algorithms with coordinated node and link mapping. IEEE Transactions on Networking,20(1), 206–219. Mosharaf, C., Muntasir, R. R., & Raouf, B. (2012). ViNEYard: Virtual network embedding algorithms with coordinated node and link mapping. IEEE Transactions on Networking,20(1), 206–219.
8.
go back to reference Fischer, A., Botero, J. F., Till Beck, M., de Meer, H., & Hesselbach, X. (2013). Virtual network embedding: A survey. IEEE Communications Surveys & Tutorials,15(4), 1888–1906. Fischer, A., Botero, J. F., Till Beck, M., de Meer, H., & Hesselbach, X. (2013). Virtual network embedding: A survey. IEEE Communications Surveys & Tutorials,15(4), 1888–1906.
9.
go back to reference Zhang, S., Qian, Z., Wu, J., Lu, S., & Epstein, L. (2014). Virtual network embedding with opportunistic resource sharing. IEEE Transactions on Parallel and Distributed Systems,25(3), 816–827. Zhang, S., Qian, Z., Wu, J., Lu, S., & Epstein, L. (2014). Virtual network embedding with opportunistic resource sharing. IEEE Transactions on Parallel and Distributed Systems,25(3), 816–827.
10.
go back to reference Guo, B., Qiao, C., Wang, J., Yu, H., Zuo, Y., Li, J., et al. (2014). Survivable virtual network design and embedding to survive a facility node failure. Journal of Lightwave Technology,32(3), 483–493. Guo, B., Qiao, C., Wang, J., Yu, H., Zuo, Y., Li, J., et al. (2014). Survivable virtual network design and embedding to survive a facility node failure. Journal of Lightwave Technology,32(3), 483–493.
11.
go back to reference Ishaq, I., Hoebeke, J., Moerman, I., & Demeester, P. (2012). Internet of things virtual networks: Bringing network virtualization to resource constrained devices. In IEEE international journal on green computing and communications (pp. 293–300). Ishaq, I., Hoebeke, J., Moerman, I., & Demeester, P. (2012). Internet of things virtual networks: Bringing network virtualization to resource constrained devices. In IEEE international journal on green computing and communications (pp. 293–300).
12.
go back to reference Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., & Polakos, P. (2015). Wireless sensor network virtualization: Early architecture and research perspectives. IEEE Network,29(3), 104–112. Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., & Polakos, P. (2015). Wireless sensor network virtualization: Early architecture and research perspectives. IEEE Network,29(3), 104–112.
13.
go back to reference Ding, M., Chen, D., Xing, K., & Cheng, X. (2005). Localized fault-tolerant event boundary detection in sensor networks. In Proceeding of the 24th annual joint conference of the IEEE computer and communications societies (INFOCOM 105). Miami, USA. Ding, M., Chen, D., Xing, K., & Cheng, X. (2005). Localized fault-tolerant event boundary detection in sensor networks. In Proceeding of the 24th annual joint conference of the IEEE computer and communications societies (INFOCOM 105). Miami, USA.
14.
go back to reference Khadivi, A., & Shiva, M. (2006). FTPASC: A fault tolerant power aware protocol with static clustering for wireless sensor networks. In IEEE international journal on swireless and mobile computing, networking and communications. Khadivi, A., & Shiva, M. (2006). FTPASC: A fault tolerant power aware protocol with static clustering for wireless sensor networks. In IEEE international journal on swireless and mobile computing, networking and communications.
15.
go back to reference Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. (2017). Increasing lifetime and fault tolerance capability in wireless sensor networks by providing a novel management framework. Wireless Personal Communications,92(2), 603–622. Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. (2017). Increasing lifetime and fault tolerance capability in wireless sensor networks by providing a novel management framework. Wireless Personal Communications,92(2), 603–622.
16.
go back to reference Guan, Z., Gao, Z., Yang, Y., Li, Y., & Qiu, X. (2010). A distributed fault recovery method in clustering-based wireless sensor networks. In Proceedings of AIAI2010, state key laboratory of networking and switching technology. Beijing University of Posts and Telecommunications, Beijing, China. Guan, Z., Gao, Z., Yang, Y., Li, Y., & Qiu, X. (2010). A distributed fault recovery method in clustering-based wireless sensor networks. In Proceedings of AIAI2010, state key laboratory of networking and switching technology. Beijing University of Posts and Telecommunications, Beijing, China.
17.
go back to reference Shalma, H., & Rajesh, R. (2014). Dynamic cluster based energy controlled routing in wireless sensor network. In ICICES2014. S.A. Engineering College, Chennai, TamilNadu, India. Shalma, H., & Rajesh, R. (2014). Dynamic cluster based energy controlled routing in wireless sensor network. In ICICES2014. S.A. Engineering College, Chennai, TamilNadu, India.
18.
go back to reference Huang, J. M, Tai, S. C, & Chen, K. H. (2009). CRINet: A secure and fault-tolerant data collection scheme using 3-way forwarding and group key management in wireless sensor networks. In IEEE wireless telecommunications symposium (pp. 1–6). Huang, J. M, Tai, S. C, & Chen, K. H. (2009). CRINet: A secure and fault-tolerant data collection scheme using 3-way forwarding and group key management in wireless sensor networks. In IEEE wireless telecommunications symposium (pp. 1–6).
19.
go back to reference Man, K. L, Chen, C., & Hughes, D. (2010). Decentralized fault detection and management for wireless sensor networks. In IEEE journal on future information technology (pp. 1–6). Man, K. L, Chen, C., & Hughes, D. (2010). Decentralized fault detection and management for wireless sensor networks. In IEEE journal on future information technology (pp. 1–6).
20.
go back to reference Sampathkumar, A., Rastogi, R., Arukonda, S., Shankar, A., Kautish, S., & Sivaram, M. (2020). An efficient hybrid methodology for detection of cancer-causing gene using CSC for micro array data. Journal of Ambient Intelligence and Humanized Computing,32(3), 483–493. Sampathkumar, A., Rastogi, R., Arukonda, S., Shankar, A., Kautish, S., & Sivaram, M. (2020). An efficient hybrid methodology for detection of cancer-causing gene using CSC for micro array data. Journal of Ambient Intelligence and Humanized Computing,32(3), 483–493.
21.
go back to reference Maheswar, R., & Kanagachidambaresan, G. R. (2020). Sustainable development through internet of things. Wireless Networks,26(5), 2305–2306. Maheswar, R., & Kanagachidambaresan, G. R. (2020). Sustainable development through internet of things. Wireless Networks,26(5), 2305–2306.
22.
go back to reference Thirumoorthy, P., Kalyanasundaram, P., Maheswar, R., et al. (2019). Time-critical energy minimization protocol using PQM (TCEM-PQM) for wireless body sensor network. J Supercomputers,32(3), 483–493. Thirumoorthy, P., Kalyanasundaram, P., Maheswar, R., et al. (2019). Time-critical energy minimization protocol using PQM (TCEM-PQM) for wireless body sensor network. J Supercomputers,32(3), 483–493.
23.
go back to reference Jayarajan, P., Kanagachidambaresan, G. R., Sundararajan, T. V. P., et al. (2018). An energy-aware buffer management (EABM) routing protocol for WSN. J Supercomputers,42(6), 690–695. Jayarajan, P., Kanagachidambaresan, G. R., Sundararajan, T. V. P., et al. (2018). An energy-aware buffer management (EABM) routing protocol for WSN. J Supercomputers,42(6), 690–695.
24.
go back to reference Jayarajan, P., Maheswar, R., & Kanagachidambaresan, G. R. (2019). Modified energy minimization scheme using queue threshold based on priority queueing model. Cluster Computing,22, 12111–12118. Jayarajan, P., Maheswar, R., & Kanagachidambaresan, G. R. (2019). Modified energy minimization scheme using queue threshold based on priority queueing model. Cluster Computing,22, 12111–12118.
25.
go back to reference Jayarajan, P., Maheswar, R., Kanagachidambaresan, G. R., Sivasankaran, V., Balaji, M. & Das, J. (2018). Performance evaluation of fault nodes using queue threshold based on N-policy priority queueing model. In 2018 9th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–5). Bangalore. Jayarajan, P., Maheswar, R., Kanagachidambaresan, G. R., Sivasankaran, V., Balaji, M. & Das, J. (2018). Performance evaluation of fault nodes using queue threshold based on N-policy priority queueing model. In 2018 9th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–5). Bangalore.
26.
go back to reference Maheswar, R., & Jayaparvathy, R. (2012). Performance analysis of fault tolerant node in wireless sensor network. In V. V. Das & J. Stephen (Eds.), Advances in communication, network, and computing, CNC. Berlin: Springer. Maheswar, R., & Jayaparvathy, R. (2012). Performance analysis of fault tolerant node in wireless sensor network. In V. V. Das & J. Stephen (Eds.), Advances in communication, network, and computing, CNC. Berlin: Springer.
27.
go back to reference Sundararajan, T. V. P., Sumithra, M. G., & Maheswar, R. (2014). A novel smart routing protocol for remote health monitoring in medical wireless networks. Journal of Health Care Engineering, Multi-Science Publications,5, 1–28. Sundararajan, T. V. P., Sumithra, M. G., & Maheswar, R. (2014). A novel smart routing protocol for remote health monitoring in medical wireless networks. Journal of Health Care Engineering, Multi-Science Publications,5, 1–28.
28.
go back to reference Abbasi, A. A., Younis, M. F., & Baroudi, U. A. (2015). Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Transaction on Vehicular Technology,8, 256–271. Abbasi, A. A., Younis, M. F., & Baroudi, U. A. (2015). Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Transaction on Vehicular Technology,8, 256–271.
29.
go back to reference Liu, L., et al. (2019). Fault-tolerant event region detection on trajectory pattern extraction for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics,32(3), 483–493. Liu, L., et al. (2019). Fault-tolerant event region detection on trajectory pattern extraction for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics,32(3), 483–493.
30.
go back to reference Mohapatra, H., & Rath, A. K. (2019). Fault-tolerant mechanism for wireless sensor network. IET Wireless Sensor Systems,18(8), 390–395. Mohapatra, H., & Rath, A. K. (2019). Fault-tolerant mechanism for wireless sensor network. IET Wireless Sensor Systems,18(8), 390–395.
31.
go back to reference Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE-LEACH protocol. IET Wireless Sensor Systems,32(3), 358–365. Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE-LEACH protocol. IET Wireless Sensor Systems,32(3), 358–365.
32.
go back to reference Li, H., et al. (2019). BIM2RT: BWAS-immune mechanism based multipath reliable transmission with fault tolerance in wireless sensor networks. Journal on Swarm and Evolutionary Computation,47, 44–55. Li, H., et al. (2019). BIM2RT: BWAS-immune mechanism based multipath reliable transmission with fault tolerance in wireless sensor networks. Journal on Swarm and Evolutionary Computation,47, 44–55.
33.
go back to reference Malathy, S., Porkodi, V., Sampathkumar, A., NourHindia, M. H. D., Dimyati, K., Tilwari, V., et al. (2019). An optimal network coding based backpressure routing approach for massive IoT network. Wireless Networks,10(3), 189–197. Malathy, S., Porkodi, V., Sampathkumar, A., NourHindia, M. H. D., Dimyati, K., Tilwari, V., et al. (2019). An optimal network coding based backpressure routing approach for massive IoT network. Wireless Networks,10(3), 189–197.
35.
go back to reference Sampathkumar, A., Murugan, S., Rastogi, R., Mishra, M. K., Malathy, S., & Manikandan, R. (2020). Energy efficient ACPI and JEHDO mechanism for IoT device energy management in healthcare. In G. Kanagachidambaresan, R. Maheswar, V. Manikandan, & K. Ramakrishnan (Eds.), Internet of things in smart technologies for sustainable urban development. EAI/springer innovations in communication and computing. Cham: Springer. Sampathkumar, A., Murugan, S., Rastogi, R., Mishra, M. K., Malathy, S., & Manikandan, R. (2020). Energy efficient ACPI and JEHDO mechanism for IoT device energy management in healthcare. In G. Kanagachidambaresan, R. Maheswar, V. Manikandan, & K. Ramakrishnan (Eds.), Internet of things in smart technologies for sustainable urban development. EAI/springer innovations in communication and computing. Cham: Springer.
Metadata
Title
Efficient fault-tolerant routing in IoT wireless sensor networks based on path graph flow modeling with Marchenko–Pastur distribution (EFT-PMD)
Authors
S. Sivakumar
P. Vivekanandan
Publication date
14-05-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02359-3

Other articles of this Issue 6/2020

Wireless Networks 6/2020 Go to the issue