Skip to main content
Top
Published in: Neural Computing and Applications 5/2021

18-06-2020 | Original Article

Crop growth stage estimation prior to canopy closure using deep learning algorithms

Authors: Sanaz Rasti, Chris J. Bleakley, Guénolé C. M. Silvestre, N. M. Holden, David Langton, Gregory M. P. O’Hare

Published in: Neural Computing and Applications | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Growth stage determination plays an important role in yield prediction and cereal husbandry decision-making. Conventionally, crop growth stage determination is performed manually by means of visual inspection. This paper investigates wheat and barley growth stage estimation by classification of proximal images using convolutional neural networks (ConvNets). A dataset consisting of 138,000 images captured prior to the crop canopy closure stage was acquired from 4 sites (7 different fields) in Ireland. The dataset includes images of 12 growth stages of wheat and 11 growth stages of barley captured for a number of crop varieties, seed rates and brightness levels. A camera was held at 2 m from the ground and two camera poses were used—downward-looking and declined to \(45^\circ\) below the horizon. Classification was carried out using three different machine learning approaches: (1) a 5-layer ConvNet model, including three convolutional layers, which was trained from scratch on our crop dataset; (2) transfer learning based on a VGG19 network pre-trained on ImageNet with an additional four fully connected layers, and (3) a support vector machine with conventional feature extraction. The classification accuracies of the aforementioned models were found to be (1) 91.1–94.2% for the ConvNet model, (2) 99.7–100% for the transfer learning model and (3) 63.6–65.1% for the SVM. For both crops, the best accuracy was obtained using the \(45^\circ\) camera pose and the transfer learning ConvNet model. For the growth stage classification task, the transfer learning ConvNet has the advantage of significantly reduced training time when compared with the built-from-scratch ConvNet model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Footnotes
1
The fields are reported by number in this paper (Tables 1 and 2) and the exact location of each field is available upon request.
 
Literature
1.
go back to reference Agarap AF (2018) Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 Agarap AF (2018) Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375
3.
go back to reference Al-Ameen Z, Sulong G, Johar MGM, Verma N, Kumar R, Dachyar M, Alkhawlani M, Mohsen A, Singh H, Singh S et al (2012) A comprehensive study on fast image deblurring techniques. Int J Adv Sci Technol 4:4 Al-Ameen Z, Sulong G, Johar MGM, Verma N, Kumar R, Dachyar M, Alkhawlani M, Mohsen A, Singh H, Singh S et al (2012) A comprehensive study on fast image deblurring techniques. Int J Adv Sci Technol 4:4
4.
go back to reference Ata-Ul-Karim ST, Liu X, Lu Z, Yuan Z, Zhu Y, Cao W (2016) In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Res 195:1–8CrossRef Ata-Ul-Karim ST, Liu X, Lu Z, Yuan Z, Zhu Y, Cao W (2016) In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Res 195:1–8CrossRef
5.
go back to reference Bansal R, Raj G, Choudhury T (2016) Blur image detection using Laplacian operator and open-cv. In: 2016 international conference system modeling and advancement in research trends (SMART). IEEE, pp 63–67 Bansal R, Raj G, Choudhury T (2016) Blur image detection using Laplacian operator and open-cv. In: 2016 international conference system modeling and advancement in research trends (SMART). IEEE, pp 63–67
6.
go back to reference Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167CrossRef Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167CrossRef
7.
go back to reference de Jesús Rubio J (2009) Sofmls: online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst 17(6):1296–1309CrossRef de Jesús Rubio J (2009) Sofmls: online self-organizing fuzzy modified least-squares network. IEEE Trans Fuzzy Syst 17(6):1296–1309CrossRef
8.
go back to reference de Jesús Rubio J (2017) Usnfis: uniform stable neuro fuzzy inference system. Neurocomputing 262:57–66CrossRef de Jesús Rubio J (2017) Usnfis: uniform stable neuro fuzzy inference system. Neurocomputing 262:57–66CrossRef
9.
go back to reference de Jesus Rubio J, Pan Y, Lughofer E, Chen MY, Qiu J (2019) Fast learning of neural networks with application to big data processes. Neurocomputing 390:294–296CrossRef de Jesus Rubio J, Pan Y, Lughofer E, Chen MY, Qiu J (2019) Fast learning of neural networks with application to big data processes. Neurocomputing 390:294–296CrossRef
10.
go back to reference Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255
11.
go back to reference Dyrmann M, Karstoft H, Midtiby HS (2016) Plant species classification using deep convolutional neural network. Biosyst Eng 151:72–80CrossRef Dyrmann M, Karstoft H, Midtiby HS (2016) Plant species classification using deep convolutional neural network. Biosyst Eng 151:72–80CrossRef
13.
go back to reference Ford A, Roberts A (1998) Colour space conversions. Westminster University, London, pp 1–31 Ford A, Roberts A (1998) Colour space conversions. Westminster University, London, pp 1–31
14.
go back to reference Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 315–323 Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 315–323
15.
go back to reference Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016) Deep learning for plant identification using vein morphological patterns. Comput Electron Agric 127:418–424CrossRef Grinblat GL, Uzal LC, Larese MG, Granitto PM (2016) Deep learning for plant identification using vein morphological patterns. Comput Electron Agric 127:418–424CrossRef
16.
go back to reference Hunt ER, Hively WD, Fujikawa S, Linden D, Daughtry CS, McCarty G (2010) Acquisition of nir-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens 2(1):290–305CrossRef Hunt ER, Hively WD, Fujikawa S, Linden D, Daughtry CS, McCarty G (2010) Acquisition of nir-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens 2(1):290–305CrossRef
17.
go back to reference Jolliffe I (2011) Principal component analysis. Springer, BerlinMATH Jolliffe I (2011) Principal component analysis. Springer, BerlinMATH
18.
go back to reference Kaya A, Keceli AS, Catal C, Yalic HY, Temucin H, Tekinerdogan B (2019) Analysis of transfer learning for deep neural network based plant classification models. Comput Electron Agric 158:20–29CrossRef Kaya A, Keceli AS, Catal C, Yalic HY, Temucin H, Tekinerdogan B (2019) Analysis of transfer learning for deep neural network based plant classification models. Comput Electron Agric 158:20–29CrossRef
19.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
20.
go back to reference Larese MG, Namías R, Craviotto RM, Arango MR, Gallo C, Granitto PM (2014) Automatic classification of legumes using leaf vein image features. Pattern Recognit 47(1):158–168CrossRef Larese MG, Namías R, Craviotto RM, Arango MR, Gallo C, Granitto PM (2014) Automatic classification of legumes using leaf vein image features. Pattern Recognit 47(1):158–168CrossRef
21.
22.
go back to reference Lee SH, Chan CS, Mayo SJ, Remagnino P (2017) How deep learning extracts and learns leaf features for plant classification. Pattern Recognit 71:1–13CrossRef Lee SH, Chan CS, Mayo SJ, Remagnino P (2017) How deep learning extracts and learns leaf features for plant classification. Pattern Recognit 71:1–13CrossRef
23.
go back to reference Luo Y, Tang X (2008) Photo and video quality evaluation: focusing on the subject. In: European conference on computer vision. Springer, pp 386–399 Luo Y, Tang X (2008) Photo and video quality evaluation: focusing on the subject. In: European conference on computer vision. Springer, pp 386–399
24.
go back to reference Mahmoodi S, Rahimi A (2009) Estimation of critical period for weed control in corn in Iran. World Acad Sci Eng Technol 49:67–72 Mahmoodi S, Rahimi A (2009) Estimation of critical period for weed control in corn in Iran. World Acad Sci Eng Technol 49:67–72
25.
go back to reference Meda-Campaña JA (2018) On the estimation and control of nonlinear systems with parametric uncertainties and noisy outputs. IEEE Access 6:31968–31973CrossRef Meda-Campaña JA (2018) On the estimation and control of nonlinear systems with parametric uncertainties and noisy outputs. IEEE Access 6:31968–31973CrossRef
26.
go back to reference Meier U (1997) Growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag, Berlin Meier U (1997) Growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag, Berlin
27.
go back to reference Meyer GE, Hindman TW, Laksmi K (1999) Machine vision detection parameters for plant species identification. In: Precision agriculture and biological quality, vol 3543, Int. Society for Optics and Photonics, pp 327–336 Meyer GE, Hindman TW, Laksmi K (1999) Machine vision detection parameters for plant species identification. In: Precision agriculture and biological quality, vol 3543, Int. Society for Optics and Photonics, pp 327–336
28.
go back to reference Quan L, Feng H, Lv Y, Wang Q, Zhang C, Liu J, Yuan Z (2019) Maize seedling detection under different growth stages and complex field environments based on an improved faster r-cnn. Biosyst Eng 184:1–23CrossRef Quan L, Feng H, Lv Y, Wang Q, Zhang C, Liu J, Yuan Z (2019) Maize seedling detection under different growth stages and complex field environments based on an improved faster r-cnn. Biosyst Eng 184:1–23CrossRef
29.
go back to reference Sadeghi-Tehran P, Sabermanesh K, Virlet N, Hawkesford MJ (2017) Automated method to determine two critical growth stages of wheat: heading and flowering. Front Plant Sci 8:252CrossRef Sadeghi-Tehran P, Sabermanesh K, Virlet N, Hawkesford MJ (2017) Automated method to determine two critical growth stages of wheat: heading and flowering. Front Plant Sci 8:252CrossRef
30.
go back to reference Sekizawa H, Yamamoto N, Kawakami H, Saito T (1994) Brightness referenced color image correcting apparatus. US Patent 5,278,641 Sekizawa H, Yamamoto N, Kawakami H, Saito T (1994) Brightness referenced color image correcting apparatus. US Patent 5,278,641
31.
go back to reference Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298CrossRef Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298CrossRef
32.
go back to reference Sibi P, Jones SA, Siddarth P (2013) Analysis of different activation functions using back propagation neural networks. J Theor Appl Inf Technol 47(3):1264–1268 Sibi P, Jones SA, Siddarth P (2013) Analysis of different activation functions using back propagation neural networks. J Theor Appl Inf Technol 47(3):1264–1268
33.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ArXiv Preprint arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ArXiv Preprint arXiv:1409.1556
34.
go back to reference Soltani A, Galeshi S (2002) Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: experimentation and simulation. Field Crops Res 77(1):17–30CrossRef Soltani A, Galeshi S (2002) Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: experimentation and simulation. Field Crops Res 77(1):17–30CrossRef
35.
go back to reference Srbinovska M, Gavrovski C, Dimcev V, Krkoleva A, Borozan V (2015) Environmental parameters monitoring in precision agriculture using wireless sensor networks. J Clean Prod 88:297–307CrossRef Srbinovska M, Gavrovski C, Dimcev V, Krkoleva A, Borozan V (2015) Environmental parameters monitoring in precision agriculture using wireless sensor networks. J Clean Prod 88:297–307CrossRef
36.
go back to reference Subramanian V, Burks TF, Arroyo A (2006) Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation. Comput Electron Agric 53(2):130–143CrossRef Subramanian V, Burks TF, Arroyo A (2006) Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation. Comput Electron Agric 53(2):130–143CrossRef
37.
go back to reference Thomas W (2014) The value of decimal cereal growth stages. Ann Appl Biol 165(3):303–304CrossRef Thomas W (2014) The value of decimal cereal growth stages. Ann Appl Biol 165(3):303–304CrossRef
38.
go back to reference Ting KM (2017) Confusion matrix. Encyclopedia of machine learning and data mining, pp 260–260 Ting KM (2017) Confusion matrix. Encyclopedia of machine learning and data mining, pp 260–260
39.
go back to reference Tokekar P, Vander Hook J, Mulla D, Isler V (2016) Sensor planning for a symbiotic uav and ugv system for precision agriculture. IEEE Trans Robot 32(6):1498–1511CrossRef Tokekar P, Vander Hook J, Mulla D, Isler V (2016) Sensor planning for a symbiotic uav and ugv system for precision agriculture. IEEE Trans Robot 32(6):1498–1511CrossRef
40.
go back to reference Wang J, Chen L, Zhang J, Yuan Y, Li M, Zeng W (2018) Cnn transfer learning for automatic image-based classification of crop disease. In: Chinese conference on image and graphics technologies. Springer, pp 319–329 Wang J, Chen L, Zhang J, Yuan Y, Li M, Zeng W (2018) Cnn transfer learning for automatic image-based classification of crop disease. In: Chinese conference on image and graphics technologies. Springer, pp 319–329
41.
go back to reference Wang L (2005) Support vector machines: theory and applications, vol 177. Springer, BerlinCrossRef Wang L (2005) Support vector machines: theory and applications, vol 177. Springer, BerlinCrossRef
42.
go back to reference Xue J, Zhang L, Grift TE (2012) Variable field-of-view machine vision based row guidance of an agricultural robot. Comput Electron Agric 84:85–91CrossRef Xue J, Zhang L, Grift TE (2012) Variable field-of-view machine vision based row guidance of an agricultural robot. Comput Electron Agric 84:85–91CrossRef
43.
go back to reference Yalcin H, Razavi S (2016) Plant classification using convolutional neural networks. In: 2016 Fifth international conference on agro-geoinformatics (agro-geoinformatics). IEEE, pp 1–5 Yalcin H, Razavi S (2016) Plant classification using convolutional neural networks. In: 2016 Fifth international conference on agro-geoinformatics (agro-geoinformatics). IEEE, pp 1–5
44.
go back to reference Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems, pp 3320–3328 Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems, pp 3320–3328
45.
go back to reference Yu Z, Cao Z, Wu X, Bai X, Qin Y, Zhuo W, Xiao Y, Zhang X, Xue H (2013) Automatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stage. Agric For Meteorol 174:65–84CrossRef Yu Z, Cao Z, Wu X, Bai X, Qin Y, Zhuo W, Xiao Y, Zhang X, Xue H (2013) Automatic image-based detection technology for two critical growth stages of maize: emergence and three-leaf stage. Agric For Meteorol 174:65–84CrossRef
46.
go back to reference Yudhana A, Umar R, Ayudewi FM (2019) The monitoring of corn sprouts growth using the region growing methods. In: Journal of Physics: conference series, vol 1373, IOP Publishing, p 012054 Yudhana A, Umar R, Ayudewi FM (2019) The monitoring of corn sprouts growth using the region growing methods. In: Journal of Physics: conference series, vol 1373, IOP Publishing, p 012054
47.
go back to reference Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421CrossRef Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421CrossRef
48.
go back to reference Zainuddin Z, Manjang S, Wijaya AS, et al. (2019) Rice farming age detection use drone based on svm histogram image classification. In: Journal of Physics: conference series, vol 1198. IOP Publishing, p 092001 Zainuddin Z, Manjang S, Wijaya AS, et al. (2019) Rice farming age detection use drone based on svm histogram image classification. In: Journal of Physics: conference series, vol 1198. IOP Publishing, p 092001
49.
go back to reference Zhang N, Wang M, Wang N (2002) Precision agriculture—a worldwide overview. Comput Electron Agric 36(2–3):113–132CrossRef Zhang N, Wang M, Wang N (2002) Precision agriculture—a worldwide overview. Comput Electron Agric 36(2–3):113–132CrossRef
50.
go back to reference Zhao S, Zheng H, Chi M, Chai X, Liu Y (2019) Rapid yield prediction in paddy fields based on 2d image modelling of rice panicles. Comput Electron Agric 162:759–766CrossRef Zhao S, Zheng H, Chi M, Chai X, Liu Y (2019) Rapid yield prediction in paddy fields based on 2d image modelling of rice panicles. Comput Electron Agric 162:759–766CrossRef
Metadata
Title
Crop growth stage estimation prior to canopy closure using deep learning algorithms
Authors
Sanaz Rasti
Chris J. Bleakley
Guénolé C. M. Silvestre
N. M. Holden
David Langton
Gregory M. P. O’Hare
Publication date
18-06-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 5/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05064-6

Other articles of this Issue 5/2021

Neural Computing and Applications 5/2021 Go to the issue

Premium Partner