Skip to main content
Top
Published in: International Journal of Computer Vision 10/2019

19-07-2019

CU-Net: Component Unmixing Network for Textile Fiber Identification

Authors: Zunlei Feng, Weixin Liang, Daocheng Tao, Li Sun, Anxiang Zeng, Mingli Song

Published in: International Journal of Computer Vision | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Image-based nondestructive textile fiber identification is a challenging computer vision problem, that is practically useful in fashion, decoration, and design. Although deep learning now outperforms humans in many scenarios such as face and object recognition, image-based fiber identification is still an open problem for deep learning given imbalanced sample and small sample size samples. In this paper, we propose the Component Unmixing Network (CU-Net) for nondestructive textile fiber identification. CU-Net learns effective representations given imbalanced sample and small sample size samples to achieve high-performance textile fiber identification. CU-Net comprises a Deep Feature Extraction Module (DFE-Module) and a Component Unmixing Module (CU-Module). Initially, mixed deep features are extracted by DFE-Module from the input textile patches. Then, CU-Module is employed to extract unmixed representations of different fibers from the mixed deep features. In CU-Module, we introduce a self-interchange and a restraining loss to reduce the mixture between representations of different fibers. Furthermore, we extend CU-Net to the proportion analysis task with very good effect. Extensive experiments demonstrate that: (1) self-interchange and the restraining loss effectively unmix different fiber representations and improve fiber identification accuracy; and (2) CU-Net achieves more accurate fiber identification than the current state-of-the-art multi-label classification methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alessandro, A., Corani, G., Mauá, D., & Gabaglio, S. (2013). An ensemble of Bayesian networks for multilabel classification. In Proceedings of the twenty-third international joint conference on artificial intelligence, IJCAI, Vol. 13, pp. 1220–1225. Alessandro, A., Corani, G., Mauá, D., & Gabaglio, S. (2013). An ensemble of Bayesian networks for multilabel classification. In Proceedings of the twenty-third international joint conference on artificial intelligence, IJCAI, Vol. 13, pp. 1220–1225.
go back to reference Bucak, S. S., Mallapragada, P. K., Jin, R., & Jain A. K. (2009). Efficient multi-label ranking for multi-class learning: Application to object recognition. In Computer vision, 2009 IEEE 12th international conference on (pp. 2098–2105). IEEE. Bucak, S. S., Mallapragada, P. K., Jin, R., & Jain A. K. (2009). Efficient multi-label ranking for multi-class learning: Application to object recognition. In Computer vision, 2009 IEEE 12th international conference on (pp. 2098–2105). IEEE.
go back to reference Gajdošík, J., Zeman, J., & Šejnoha, M. (2006). Qualitative analysis of fiber composite microstructure: Influence of boundary conditions. Probabilistic Engineering Mechanics, 21(4), 317–329.CrossRef Gajdošík, J., Zeman, J., & Šejnoha, M. (2006). Qualitative analysis of fiber composite microstructure: Influence of boundary conditions. Probabilistic Engineering Mechanics, 21(4), 317–329.CrossRef
go back to reference Geng, X., Gui, J., & Zhou, l. (2016). Research and development of nondestructive and fast identification of textile fibers. China Textile Leader. Geng, X., Gui, J., & Zhou, l. (2016). Research and development of nondestructive and fast identification of textile fibers. China Textile Leader.
go back to reference Goutsu, Y., Takano, W., & Nakamura, Y. (2018). Classification of multi-class daily human motion using discriminative body parts and sentence descriptions. International Journal of Computer Vision, 126(5), 495–514.MathSciNetCrossRef Goutsu, Y., Takano, W., & Nakamura, Y. (2018). Classification of multi-class daily human motion using discriminative body parts and sentence descriptions. International Journal of Computer Vision, 126(5), 495–514.MathSciNetCrossRef
go back to reference He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In computer vision and pattern recognition, pp. 770–778. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In computer vision and pattern recognition, pp. 770–778.
go back to reference Hsu, D. J., Kakade, S. M., Langford, J., & Zhang, T. (2009). Multi-label prediction via compressed sensing. In Advances in neural information processing systems, pp. 772–780. Hsu, D. J., Kakade, S. M., Langford, J., & Zhang, T. (2009). Multi-label prediction via compressed sensing. In Advances in neural information processing systems, pp. 772–780.
go back to reference Huang, G., Liu, Z., Der Maaten, L. V., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In computer vision and pattern recognition, pp. 2261–2269. Huang, G., Liu, Z., Der Maaten, L. V., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In computer vision and pattern recognition, pp. 2261–2269.
go back to reference Izadinia, H., Russell, B. C., Farhadi, A., Hoffman, M. D., & Hertzmann, A. (2015). Deep classifiers from image tags in the wild. In Proceedings of the 2015 workshop on community-organized multimodal mining: Opportunities for novel solutions (pp. 13–18). ACM. Izadinia, H., Russell, B. C., Farhadi, A., Hoffman, M. D., & Hertzmann, A. (2015). Deep classifiers from image tags in the wild. In Proceedings of the 2015 workshop on community-organized multimodal mining: Opportunities for novel solutions (pp. 13–18). ACM.
go back to reference Kapoor, A., Viswanathan, R., & Jain, P. (2012). Multilabel classification using Bayesian compressed sensing. In Advances in neural information processing systems, pp. 2645–2653. Kapoor, A., Viswanathan, R., & Jain, P. (2012). Multilabel classification using Bayesian compressed sensing. In Advances in neural information processing systems, pp. 2645–2653.
go back to reference Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp 1097–1105. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp 1097–1105.
go back to reference Langeron, Y., Doussot, M., Hewson, D. J., & Duchêne, J. (2007). Classifying nir spectra of textile products with kernel methods. Engineering Applications of Artificial Intelligence, 20(3), 415–427.CrossRef Langeron, Y., Doussot, M., Hewson, D. J., & Duchêne, J. (2007). Classifying nir spectra of textile products with kernel methods. Engineering Applications of Artificial Intelligence, 20(3), 415–427.CrossRef
go back to reference Liu, W., & Tsang, I. W. (2015). Large margin metric learning for multi-label prediction. In AAAI, Vol. 15, pp. 2800–2806. Liu, W., & Tsang, I. W. (2015). Large margin metric learning for multi-label prediction. In AAAI, Vol. 15, pp. 2800–2806.
go back to reference Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9(2605), 2579–2605.MATH Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9(2605), 2579–2605.MATH
go back to reference Masko, D., & Hensman, P. (2015). The impact of imbalanced training data for convolutional neural networks. Masko, D., & Hensman, P. (2015). The impact of imbalanced training data for convolutional neural networks.
go back to reference Nam, J., Kim, J., Mencía, E. L., Gurevych, I., & Fürnkranz, J. (2014). Large-scale multi-label text classification revisiting neural networks. In Joint European conference on machine learning and knowledge discovery in databases (pp. pp 437–452). Springer. Nam, J., Kim, J., Mencía, E. L., Gurevych, I., & Fürnkranz, J. (2014). Large-scale multi-label text classification revisiting neural networks. In Joint European conference on machine learning and knowledge discovery in databases (pp. pp 437–452). Springer.
go back to reference Read, J. (2010). Scalable multi-label classification. Ph.D. thesis, University of Waikato. Read, J. (2010). Scalable multi-label classification. Ph.D. thesis, University of Waikato.
go back to reference Rothe, R., Timofte, R., & Gool, L. V. (2016). Deep expectation of real and apparent age from a single image without facial landmarks. International Journal of Computer Vision, 1–14. Rothe, R., Timofte, R., & Gool, L. V. (2016). Deep expectation of real and apparent age from a single image without facial landmarks. International Journal of Computer Vision, 1–14.
go back to reference Shu, X., Lai, D., Xu, H., & Tao, L. (2015). Learning shared subspace for multi-label dimensionality reduction via dependence maximization. Neurocomputing, 168, 356–364.CrossRef Shu, X., Lai, D., Xu, H., & Tao, L. (2015). Learning shared subspace for multi-label dimensionality reduction via dependence maximization. Neurocomputing, 168, 356–364.CrossRef
go back to reference Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference on learning representations. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In International conference on learning representations.
go back to reference Song, Y., McDuff, D., Vasisht, D., & Kapoor, A. (2015). Exploiting sparsity and co-occurrence structure for action unit recognition. In 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG) (Vol. 1, pp. 1–8). IEEE. Song, Y., McDuff, D., Vasisht, D., & Kapoor, A. (2015). Exploiting sparsity and co-occurrence structure for action unit recognition. In 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG) (Vol. 1, pp. 1–8). IEEE.
go back to reference Sun, X., Zhou, M., & Sun, Y. (2016). Classification of textile fabrics by use of spectroscopy-based pattern recognition methods. Spectroscopy Letters, 49(2), 96–102.CrossRef Sun, X., Zhou, M., & Sun, Y. (2016). Classification of textile fabrics by use of spectroscopy-based pattern recognition methods. Spectroscopy Letters, 49(2), 96–102.CrossRef
go back to reference Tang, L., Rajan, S., & Narayanan, V. K. (2009). Large scale multi-label classification via metalabeler. In International conference on world wide web, pp. 211–220. Tang, L., Rajan, S., & Narayanan, V. K. (2009). Large scale multi-label classification via metalabeler. In International conference on world wide web, pp. 211–220.
go back to reference Verma, Y., & Jawahar, C. V. (2016). Image annotation by propagating labels from semantic neighbourhoods. International Journal of Computer Vision, 1–23. Verma, Y., & Jawahar, C. V. (2016). Image annotation by propagating labels from semantic neighbourhoods. International Journal of Computer Vision, 1–23.
go back to reference Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016). Cnn-rnn: A unified framework for multi-label image classification. In 2016 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2285–2294). IEEE. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016). Cnn-rnn: A unified framework for multi-label image classification. In 2016 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2285–2294). IEEE.
go back to reference Wu, B., Lyu, S., & Ghanem, B. (2015a). Ml-mg: Multi-label learning with missing labels using a mixed graph. In Proceedings of the IEEE international conference on computer vision, pp. 4157–4165. Wu, B., Lyu, S., & Ghanem, B. (2015a). Ml-mg: Multi-label learning with missing labels using a mixed graph. In Proceedings of the IEEE international conference on computer vision, pp. 4157–4165.
go back to reference Wu, F., Wang, Z., Zhang, Z., Yang, Y., Luo, J., Zhu, W., et al. (2015b). Weakly semi-supervised deep learning for multi-label image annotation. IEEE Transactions on Big Data, 1(3), 109–122.CrossRef Wu, F., Wang, Z., Zhang, Z., Yang, Y., Luo, J., Zhu, W., et al. (2015b). Weakly semi-supervised deep learning for multi-label image annotation. IEEE Transactions on Big Data, 1(3), 109–122.CrossRef
go back to reference Wu, X., Hiramatsu, K., & Kashino, K. (2018). Label propagation with ensemble of pairwise geometric relations: Towards robust large-scale retrieval of object instances. International Journal of Computer Vision, 1–25. Wu, X., Hiramatsu, K., & Kashino, K. (2018). Label propagation with ensemble of pairwise geometric relations: Towards robust large-scale retrieval of object instances. International Journal of Computer Vision, 1–25.
go back to reference Xu, C., Tao, D., & Xu, C. (2015). Large-margin multi-label causal feature learning. In AAAI, pp. 1924–1930. Xu, C., Tao, D., & Xu, C. (2015). Large-margin multi-label causal feature learning. In AAAI, pp. 1924–1930.
go back to reference Yang, M., Zhang, L., Feng, X., & Zhang, D. (2014). Sparse representation based fisher discrimination dictionary learning for image classification. International Journal of Computer Vision, 109(3), 209–232.MathSciNetCrossRefMATH Yang, M., Zhang, L., Feng, X., & Zhang, D. (2014). Sparse representation based fisher discrimination dictionary learning for image classification. International Journal of Computer Vision, 109(3), 209–232.MathSciNetCrossRefMATH
go back to reference Yang, Y., Feng, J., Jojic, N., Yang, J., & Huang, T. S. (2018). Subspace learning by \(\ell ^{0}\) -induced sparsity. International Journal of Computer Vision, 1–19. Yang, Y., Feng, J., Jojic, N., Yang, J., & Huang, T. S. (2018). Subspace learning by \(\ell ^{0}\) -induced sparsity. International Journal of Computer Vision, 1–19.
go back to reference Yeh, C. K., Wu, W. C., Ko, W. J., & Wang, Y. C. F. (2017). Learning deep latent space for multi-label classification. In AAAI, pp. 2838–2844. Yeh, C. K., Wu, W. C., Ko, W. J., & Wang, Y. C. F. (2017). Learning deep latent space for multi-label classification. In AAAI, pp. 2838–2844.
go back to reference Yuan, H. F., Chang, R. X., Tian, L. L., Song, C. F., Yuan, X. Q., & Li, X. Y. (2010). Study of nondestructive and fast identification of fabric fibers using near infrared spectroscopy. Guang pu xue yu guang pu fen xi = Guang pu, 30(5), 1229. Yuan, H. F., Chang, R. X., Tian, L. L., Song, C. F., Yuan, X. Q., & Li, X. Y. (2010). Study of nondestructive and fast identification of fabric fibers using near infrared spectroscopy. Guang pu xue yu guang pu fen xi = Guang pu, 30(5), 1229.
go back to reference Zhang, M. L., & Zhou, Z. H. (2007). Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038–2048.CrossRefMATH Zhang, M. L., & Zhou, Z. H. (2007). Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038–2048.CrossRefMATH
go back to reference Zhang, T., Liu, S., Ahuja, N., Yang, M. H., & Ghanem, B. (2015). Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision, 111(2), 171–190.CrossRefMATH Zhang, T., Liu, S., Ahuja, N., Yang, M. H., & Ghanem, B. (2015). Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision, 111(2), 171–190.CrossRefMATH
go back to reference Zhao, F., & Guo, Y. (2015). Semi-supervised multi-label learning with incomplete labels. In IJCAI, pp. 4062–4068. Zhao, F., & Guo, Y. (2015). Semi-supervised multi-label learning with incomplete labels. In IJCAI, pp. 4062–4068.
go back to reference Zhou, T., & Tao, D. (2012). Multi-label subspace ensemble. In Artificial intelligence and statistics, pp. 1444–1452. Zhou, T., & Tao, D. (2012). Multi-label subspace ensemble. In Artificial intelligence and statistics, pp. 1444–1452.
go back to reference Zhou, T., Tao, D., & Wu, X. (2012). Compressed labeling on distilled labelsets for multi-label learning. Machine Learning, 88(1–2), 69–126.MathSciNetCrossRefMATH Zhou, T., Tao, D., & Wu, X. (2012). Compressed labeling on distilled labelsets for multi-label learning. Machine Learning, 88(1–2), 69–126.MathSciNetCrossRefMATH
Metadata
Title
CU-Net: Component Unmixing Network for Textile Fiber Identification
Authors
Zunlei Feng
Weixin Liang
Daocheng Tao
Li Sun
Anxiang Zeng
Mingli Song
Publication date
19-07-2019
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 10/2019
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-019-01199-9

Other articles of this Issue 10/2019

International Journal of Computer Vision 10/2019 Go to the issue

Premium Partner