Skip to main content
Top

2021 | OriginalPaper | Chapter

Current Status of the Development of Blood-Based Point-of-Care Microdevices

Authors : Vijai Laxmi, Siddhartha Tripathi, Amit Agrawal

Published in: Mechanical Sciences

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Blood is one of the most common human tissues required to assess the human health condition. In a conventional setup, disease diagnosis includes consultation with a health practitioner, blood analysis, and follow up. Overall, the diagnosis process is time consuming and delays the timely treatment of the patients. Point-of-care technology (POCT) is rapidly progressing toward providing innovative and efficient solutions for diagnosing. Point-of-care (POC) devices are portable, provide on-site testing of the blood within few minutes, and utilize small volume of blood. Lab-on-chip microfluidic devices play a key role in the progress of POCT. Several lab-on-chip (LOC) microdevices have been reported in literature for the successful detection of various diseases using blood as a sample fluid. Here, we review blood-based lab-on-chip microfluidics devices dedicated to the point-of-care technology. Our review focuses on the technologies and designs of various dedicated microdevices toward disease diagnostics in reference with blood components such as plasma, red blood cells, white blood cells, platelets, and circulating tumor cells. The review should therefore serve as a useful reference for the development of future blood-based POC devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fung, Y.C.: Biomechanics—Mechanical Properties of Living Tissues, 1st edn. Springer (1981) Fung, Y.C.: Biomechanics—Mechanical Properties of Living Tissues, 1st edn. Springer (1981)
2.
go back to reference Caro, C. G.: The Mechanics of the Circulation, 2nd edn. Cambridge University Press (2011) Caro, C. G.: The Mechanics of the Circulation, 2nd edn. Cambridge University Press (2011)
3.
go back to reference Lee, J., Lee, S.H.: Lab on a chip for in situ diagnosis: from blood to point of care. Biomed. Eng. Lett. 3(2), 59–66 (2013)CrossRef Lee, J., Lee, S.H.: Lab on a chip for in situ diagnosis: from blood to point of care. Biomed. Eng. Lett. 3(2), 59–66 (2013)CrossRef
4.
go back to reference Jung, W., Han, J., Choi, J.W., Ahn, C.H.: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 132, 46–57 (2015)CrossRef Jung, W., Han, J., Choi, J.W., Ahn, C.H.: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 132, 46–57 (2015)CrossRef
5.
go back to reference Sackmann, E.K., Fulton, A.L., Beebe, D.J.: The present and future role of microfluidics in biomedical research. Nature 507(7491), 181–189 (2014)CrossRef Sackmann, E.K., Fulton, A.L., Beebe, D.J.: The present and future role of microfluidics in biomedical research. Nature 507(7491), 181–189 (2014)CrossRef
6.
go back to reference Kersaudy-Kerhoas, M., Sollier, E.: Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13(17), 3323–3346 (2013)CrossRef Kersaudy-Kerhoas, M., Sollier, E.: Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13(17), 3323–3346 (2013)CrossRef
7.
go back to reference Tripathi, S., Kumar, Y.B., Agrawal, A., Prabhakar, A., Joshi, S.S.: Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects. Sci. Rep. 6, 26749 (2016)CrossRef Tripathi, S., Kumar, Y.B., Agrawal, A., Prabhakar, A., Joshi, S.S.: Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects. Sci. Rep. 6, 26749 (2016)CrossRef
8.
go back to reference Lima, R., Ishikawa, T., Imai, Y., Yamaguchi, T.: Blood flow behavior in microchannels: past, current and future trends. In: Single and Two-Phase Flows on Chemical and Biomedical Engineering, pp. 513–547 (2012) Lima, R., Ishikawa, T., Imai, Y., Yamaguchi, T.: Blood flow behavior in microchannels: past, current and future trends. In: Single and Two-Phase Flows on Chemical and Biomedical Engineering, pp. 513–547 (2012)
9.
go back to reference Hou, H.W., Bhagat, A.A.S., Lee, W.C., Huang, S., Han, J., Lim, C.T.: Microfluidic devices for blood fractionation. Micromachines 2(3), 319–343 (2011)CrossRef Hou, H.W., Bhagat, A.A.S., Lee, W.C., Huang, S., Han, J., Lim, C.T.: Microfluidic devices for blood fractionation. Micromachines 2(3), 319–343 (2011)CrossRef
10.
go back to reference Cui, F., Rhee, M., Singh, A., Tripathi, A.: Microfluidic sample preparation for medical diagnostics. Annu. Rev. Biomed. Eng. 17, 267–286 (2015)CrossRef Cui, F., Rhee, M., Singh, A., Tripathi, A.: Microfluidic sample preparation for medical diagnostics. Annu. Rev. Biomed. Eng. 17, 267–286 (2015)CrossRef
11.
go back to reference Jiang, H., Weng, X., Chon, C.H., Wu, X., Li, D.: A microfluidic chip for blood plasma separation using electro-osmotic flow control. J. Micromech. Microeng. 21(8), 085019 (2011)CrossRef Jiang, H., Weng, X., Chon, C.H., Wu, X., Li, D.: A microfluidic chip for blood plasma separation using electro-osmotic flow control. J. Micromech. Microeng. 21(8), 085019 (2011)CrossRef
12.
go back to reference Nakashima, Y., Hata, S., Yasuda, T.: Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces. Sens. Actuators B. 145, 561–569 (2010) Nakashima, Y., Hata, S., Yasuda, T.: Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces. Sens. Actuators B. 145, 561–569 (2010)
13.
go back to reference Mohammadi, M., Madadi, H., Casals-Terré, J.: Microfluidic point-of-care blood panel based on a novel technique: reversible electroosmotic flow. Biomicrofluidics 9(5), 054106 (2015)CrossRef Mohammadi, M., Madadi, H., Casals-Terré, J.: Microfluidic point-of-care blood panel based on a novel technique: reversible electroosmotic flow. Biomicrofluidics 9(5), 054106 (2015)CrossRef
14.
go back to reference Vemulapati, S., Erickson, D.: HERMES: rapid blood-plasma separation at the point-of-need. Lab Chip 18(21), 3285–3292 (2018)CrossRef Vemulapati, S., Erickson, D.: HERMES: rapid blood-plasma separation at the point-of-need. Lab Chip 18(21), 3285–3292 (2018)CrossRef
15.
go back to reference Laurell, T., Petersson, F., Nilsson, A.: Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36, 492–506 (2007)CrossRef Laurell, T., Petersson, F., Nilsson, A.: Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36, 492–506 (2007)CrossRef
16.
go back to reference Lenshof, A., Ahmad-Tajudin, A., Jarås, K., Sward-Nilsson, A.M., Åberg, L., Marko-Varga, G., Laurell, T.: Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem. 81(15), 6030–6037 (2009)CrossRef Lenshof, A., Ahmad-Tajudin, A., Jarås, K., Sward-Nilsson, A.M., Åberg, L., Marko-Varga, G., Laurell, T.: Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem. 81(15), 6030–6037 (2009)CrossRef
17.
go back to reference MacDonald, M.P., Spalding, G.C., Dholakia, K.: Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003)CrossRef MacDonald, M.P., Spalding, G.C., Dholakia, K.: Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003)CrossRef
18.
go back to reference Huh, D., Bahng, J.H., Ling, Y., Wei, H.H., Kripfgans, O.D., Fowlkes, J.B., Grotberg, J.B., Takayama, S.: Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79, 1369–1376 (2007)CrossRef Huh, D., Bahng, J.H., Ling, Y., Wei, H.H., Kripfgans, O.D., Fowlkes, J.B., Grotberg, J.B., Takayama, S.: Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79, 1369–1376 (2007)CrossRef
19.
go back to reference Moorthy, J., Beebe, D.J.: In situ fabricated porous filters for microsystems. Lab Chip 3(2), 62–66 (2003)CrossRef Moorthy, J., Beebe, D.J.: In situ fabricated porous filters for microsystems. Lab Chip 3(2), 62–66 (2003)CrossRef
20.
go back to reference Thorslund, S., Klett, O., Nikolajeff, F., Markides, K., Bergquist, J.: A hybrid poly (dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed. Microdevice 8(1), 73–79 (2006)CrossRef Thorslund, S., Klett, O., Nikolajeff, F., Markides, K., Bergquist, J.: A hybrid poly (dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed. Microdevice 8(1), 73–79 (2006)CrossRef
21.
go back to reference Wang, S., Sarenac, D., Chen, M.H., Huang, S.H., Giguel, F.F., Kuritzkes, D.R., Demirci, U.: Simple filter microchip for rapid separation of plasma and viruses from whole blood. Int. J. Nanomed. 7, 5019 (2012) Wang, S., Sarenac, D., Chen, M.H., Huang, S.H., Giguel, F.F., Kuritzkes, D.R., Demirci, U.: Simple filter microchip for rapid separation of plasma and viruses from whole blood. Int. J. Nanomed. 7, 5019 (2012)
22.
go back to reference Shim, J.S., Ahn, C.H.: An on-chip whole blood/plasma separator using heteropacked beads at the inlet of a microchannel. Lab Chip 12(5), 863–866 (2012)CrossRef Shim, J.S., Ahn, C.H.: An on-chip whole blood/plasma separator using heteropacked beads at the inlet of a microchannel. Lab Chip 12(5), 863–866 (2012)CrossRef
23.
go back to reference Aran, K., Fok, A., Sasso, L.A., Kamdar, N., Guan, Y., Sun, Q., Ündar, A., Zahn, J.D.: Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery. Lab Chip 11(17), 2858–2868 (2011)CrossRef Aran, K., Fok, A., Sasso, L.A., Kamdar, N., Guan, Y., Sun, Q., Ündar, A., Zahn, J.D.: Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery. Lab Chip 11(17), 2858–2868 (2011)CrossRef
24.
go back to reference Sun, M., Khan, Z.S., Vanapalli, S.A.: Blood plasma separation in a long two-phase plug flowing through disposable tubing. Lab Chip 12(24), 5225–5230 (2012)CrossRef Sun, M., Khan, Z.S., Vanapalli, S.A.: Blood plasma separation in a long two-phase plug flowing through disposable tubing. Lab Chip 12(24), 5225–5230 (2012)CrossRef
25.
go back to reference Zhang, X.B., Wu, Z.Q., Wang, K., Zhu, J., Xu, J.J., Xia, X.H., Chen, H.Y.: Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip. Anal. Chem. 84(8), 3780–3786 (2012)CrossRef Zhang, X.B., Wu, Z.Q., Wang, K., Zhu, J., Xu, J.J., Xia, X.H., Chen, H.Y.: Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip. Anal. Chem. 84(8), 3780–3786 (2012)CrossRef
26.
go back to reference Tachi, T., Kaji, N., Tokeshi, M., Baba, Y.: Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal. Chem. 81(8), 3194–3198 (2009)CrossRef Tachi, T., Kaji, N., Tokeshi, M., Baba, Y.: Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal. Chem. 81(8), 3194–3198 (2009)CrossRef
27.
go back to reference Dimov, I.K., Basabe-Desmonts, L., Garcia-Cordero, J.L., Ross, B.M., Ricco, A.J., Lee, L.P.: Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip 11(5), 845–850 (2011)CrossRef Dimov, I.K., Basabe-Desmonts, L., Garcia-Cordero, J.L., Ross, B.M., Ricco, A.J., Lee, L.P.: Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip 11(5), 845–850 (2011)CrossRef
28.
go back to reference Wu, Z., Hjort, K.: Microfluidic hydrodynamic cell separation: a review. Micro Nanosyst. 1(3), 181–192 (2009)CrossRef Wu, Z., Hjort, K.: Microfluidic hydrodynamic cell separation: a review. Micro Nanosyst. 1(3), 181–192 (2009)CrossRef
29.
go back to reference Davis, J.A., Inglis, D.W., Morton, K.J., Lawrence, D.A., Huang, L.R., Chou, S.Y., Sturm, J.C., Austin, R.H.: Deterministic hydrodynamics: taking blood apart. Proc. Natl. Acad. Sci. 103(40), 14779–14784 (2006)CrossRef Davis, J.A., Inglis, D.W., Morton, K.J., Lawrence, D.A., Huang, L.R., Chou, S.Y., Sturm, J.C., Austin, R.H.: Deterministic hydrodynamics: taking blood apart. Proc. Natl. Acad. Sci. 103(40), 14779–14784 (2006)CrossRef
30.
go back to reference Kersaudy-Kerhoas, M., Kavanagh, D.M., Dhariwal, R.S., Campbell, C.J., Desmulliez, M.P.: Validation of a blood plasma separation system by biomarker detection. Lab Chip 10(12), 1587–1595 (2010)CrossRef Kersaudy-Kerhoas, M., Kavanagh, D.M., Dhariwal, R.S., Campbell, C.J., Desmulliez, M.P.: Validation of a blood plasma separation system by biomarker detection. Lab Chip 10(12), 1587–1595 (2010)CrossRef
31.
go back to reference Maria, M.S., Rakesh, P.E., Chandra, T.S., Sen, A.K.: Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation. Sci. Rep. 7, 43457 (2017)CrossRef Maria, M.S., Rakesh, P.E., Chandra, T.S., Sen, A.K.: Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation. Sci. Rep. 7, 43457 (2017)CrossRef
32.
go back to reference Yang, S., Ündar, A., Zahn, J.D.: A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6(7), 871–880 (2006)CrossRef Yang, S., Ündar, A., Zahn, J.D.: A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6(7), 871–880 (2006)CrossRef
33.
go back to reference Vella, S.J., Beattie, P., Cademartiri, R., Laromaine, A., Martinez, A.W., Phillips, S.T., Whitesides, G.M.: Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal. Chem. 84(6), 2883–2891 (2012)CrossRef Vella, S.J., Beattie, P., Cademartiri, R., Laromaine, A., Martinez, A.W., Phillips, S.T., Whitesides, G.M.: Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal. Chem. 84(6), 2883–2891 (2012)CrossRef
34.
go back to reference Fahraeus, R.: The suspension stability of the blood. Physiol. Rev. 9, 241–274 (1929)CrossRef Fahraeus, R.: The suspension stability of the blood. Physiol. Rev. 9, 241–274 (1929)CrossRef
35.
go back to reference Fahraus, R., Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. (legacy content) 96, 562–568 (1931) Fahraus, R., Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. (legacy content) 96, 562–568 (1931)
36.
go back to reference Barbee, J.H., Cokelet, G.R.: The Fahraeus effect. Microvasc. Res. 3, 6–16 (1971)CrossRef Barbee, J.H., Cokelet, G.R.: The Fahraeus effect. Microvasc. Res. 3, 6–16 (1971)CrossRef
37.
go back to reference Vázquez-Guardado, A., Barkam, S., Peppler, M., Biswas, A., Dennis, W., Das, S., Chanda, D.: Enzyme-free plasmonic biosensor for direct detection of neurotransmitter dopamine from whole blood. Nano Lett. 19(1), 449–454 (2018)CrossRef Vázquez-Guardado, A., Barkam, S., Peppler, M., Biswas, A., Dennis, W., Das, S., Chanda, D.: Enzyme-free plasmonic biosensor for direct detection of neurotransmitter dopamine from whole blood. Nano Lett. 19(1), 449–454 (2018)CrossRef
39.
go back to reference Marieb, E.N., Hoehn, K.: Human Anatomy & Physiology. Pearson Education (2007) Marieb, E.N., Hoehn, K.: Human Anatomy & Physiology. Pearson Education (2007)
40.
go back to reference Higgins, C.: Hemoglobin and its Measurement. Hemoglobin (2005) Higgins, C.: Hemoglobin and its Measurement. Hemoglobin (2005)
41.
go back to reference Wennecke, G.: Hematocrit—A Review of Different Analytical Methods. Radiometer Medical ApS (2004) Wennecke, G.: Hematocrit—A Review of Different Analytical Methods. Radiometer Medical ApS (2004)
42.
go back to reference Laposata M., Laboratory Medicine Diagnosis of Disease in Clinical Laboratory 2/E. McGraw-Hill Education; 2014 Laposata M., Laboratory Medicine Diagnosis of Disease in Clinical Laboratory 2/E. McGraw-Hill Education; 2014
43.
go back to reference Kolluri, N., Klapperich, C.M., Cabodi, M.: Towards lab-on-a-chip diagnostics for malaria elimination. Lab Chip 18(1), 75–94 (2018)CrossRef Kolluri, N., Klapperich, C.M., Cabodi, M.: Towards lab-on-a-chip diagnostics for malaria elimination. Lab Chip 18(1), 75–94 (2018)CrossRef
44.
go back to reference Karsan, A., Maclaren, I., Conn, D., Wadsworth, L.: An evaluation of hemoglobin determination using sodium lauryl sulfate. Am. J. Clin. Pathol. 100(2), 123–126 (1993)CrossRef Karsan, A., Maclaren, I., Conn, D., Wadsworth, L.: An evaluation of hemoglobin determination using sodium lauryl sulfate. Am. J. Clin. Pathol. 100(2), 123–126 (1993)CrossRef
45.
go back to reference Srivastava, T., Negandhi, H., Neogi, S.B., Sharma, J., Saxena, R.: Methods for hemoglobin estimation: a review of “What Works”. J. Hematol. Transfus. 2(3), 1028 (2014) Srivastava, T., Negandhi, H., Neogi, S.B., Sharma, J., Saxena, R.: Methods for hemoglobin estimation: a review of “What Works”. J. Hematol. Transfus. 2(3), 1028 (2014)
46.
go back to reference Yang, X., Piety, N.Z., Vignes, S.M., Benton, M.S., Kanter, J., Shevkoplyas, S.S.: Simple paper-based test for measuring blood hemoglobin concentration in resource-limited settings. Clin. Chem. 59(10), 1506–1513 (2013)CrossRef Yang, X., Piety, N.Z., Vignes, S.M., Benton, M.S., Kanter, J., Shevkoplyas, S.S.: Simple paper-based test for measuring blood hemoglobin concentration in resource-limited settings. Clin. Chem. 59(10), 1506–1513 (2013)CrossRef
47.
go back to reference Taparia, N., Platten, K.C., Anderson, K.B., Sniadecki, N.J.: A microfluidic approach for hemoglobin detection in whole blood. AIP Adv. 7(10), 105102 (2017)CrossRef Taparia, N., Platten, K.C., Anderson, K.B., Sniadecki, N.J.: A microfluidic approach for hemoglobin detection in whole blood. AIP Adv. 7(10), 105102 (2017)CrossRef
48.
go back to reference Zhu, H., Sencan, I., Wong, J., Dimitrov, S., Tseng, D., Nagashima, K., Ozcan, A.: Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13(7), 1282–1288 (2013)CrossRef Zhu, H., Sencan, I., Wong, J., Dimitrov, S., Tseng, D., Nagashima, K., Ozcan, A.: Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13(7), 1282–1288 (2013)CrossRef
49.
go back to reference Guo, T., Patnaik, R., Kuhlmann, K., Rai, A.J., Sia, S.K.: Smartphone dongle for simultaneous measurement of hemoglobin concentration and detection of HIV antibodies. Lab Chip 15(17), 3514–3520 (2015)CrossRef Guo, T., Patnaik, R., Kuhlmann, K., Rai, A.J., Sia, S.K.: Smartphone dongle for simultaneous measurement of hemoglobin concentration and detection of HIV antibodies. Lab Chip 15(17), 3514–3520 (2015)CrossRef
50.
go back to reference Briggs, C., Kimber, S., Green, L.: Where are we at with point-of-care testing in haematology? Br. J. Haematol. 158(6), 679–690 (2012)CrossRef Briggs, C., Kimber, S., Green, L.: Where are we at with point-of-care testing in haematology? Br. J. Haematol. 158(6), 679–690 (2012)CrossRef
51.
go back to reference Stott, G.J., Lewis, S.M.: A simple and reliable method for estimating haemoglobin. Bull. World Health Organ. 73(3), 369 (1995) Stott, G.J., Lewis, S.M.: A simple and reliable method for estimating haemoglobin. Bull. World Health Organ. 73(3), 369 (1995)
52.
go back to reference Singh, A., Dubey, A., Sonker, A., Chaudhary, R.: Evaluation of various methods of point-of-care testing of haemoglobin concentration in blood donors. Blood Transfusion 13(2), 233 (2015) Singh, A., Dubey, A., Sonker, A., Chaudhary, R.: Evaluation of various methods of point-of-care testing of haemoglobin concentration in blood donors. Blood Transfusion 13(2), 233 (2015)
53.
go back to reference Berry, S.B., Fernandes, S.C., Rajaratnam, A., DeChiara, N.S., Mace, C.R.: Measurement of the hematocrit using paper-based microfluidic devices. Lab Chip 16, 3689–3694 (2016)CrossRef Berry, S.B., Fernandes, S.C., Rajaratnam, A., DeChiara, N.S., Mace, C.R.: Measurement of the hematocrit using paper-based microfluidic devices. Lab Chip 16, 3689–3694 (2016)CrossRef
54.
go back to reference Nam, J., Huang, H., Lim, H., Lim, C., Shin, S.: Magnetic separation of malaria-infected red blood cells in various developmental stages. Anal. Chem. 85(15), 7316–7323 (2013)CrossRef Nam, J., Huang, H., Lim, H., Lim, C., Shin, S.: Magnetic separation of malaria-infected red blood cells in various developmental stages. Anal. Chem. 85(15), 7316–7323 (2013)CrossRef
55.
go back to reference Abdalla, S.H., Pasvol, G.: Malaria: A Hematological Perspective. Imperial College Press (2004) Abdalla, S.H., Pasvol, G.: Malaria: A Hematological Perspective. Imperial College Press (2004)
56.
go back to reference Reboud, J., Xu, G., Garrett, A., Adriko, M., Yang, Z., Tukahebwa, E.M., Rowell, C., Cooper, J.M.: Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc. Natl. Acad. Sci. 116(11), 4834–4842 (2019)CrossRef Reboud, J., Xu, G., Garrett, A., Adriko, M., Yang, Z., Tukahebwa, E.M., Rowell, C., Cooper, J.M.: Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc. Natl. Acad. Sci. 116(11), 4834–4842 (2019)CrossRef
57.
go back to reference Point-of-care tests for malaria, Horizon Scan Report 0040 (2015) Point-of-care tests for malaria, Horizon Scan Report 0040 (2015)
58.
go back to reference Hou, H.W., Bhagat, A.A., Chong, A.G., Mao, P., Tan, K.S., Han, J., Lim, C.T.: Deformability based cell margination-a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10(19), 2605–2613 (2010)CrossRef Hou, H.W., Bhagat, A.A., Chong, A.G., Mao, P., Tan, K.S., Han, J., Lim, C.T.: Deformability based cell margination-a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10(19), 2605–2613 (2010)CrossRef
59.
go back to reference Warkiani, M.E., Tay, A.K., Khoo, B.L., Xiaofeng, X., Han, J., Lim, C.T.: Malaria detection using inertial microfluidics. Lab Chip 15(4), 1101–1109 (2015)CrossRef Warkiani, M.E., Tay, A.K., Khoo, B.L., Xiaofeng, X., Han, J., Lim, C.T.: Malaria detection using inertial microfluidics. Lab Chip 15(4), 1101–1109 (2015)CrossRef
60.
go back to reference Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.: Immunobiology: the immune system in health and disease. Lon.: Curr. Biol. 7, 26 (1996) Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.: Immunobiology: the immune system in health and disease. Lon.: Curr. Biol. 7, 26 (1996)
61.
go back to reference Wu, Z., Chen, Y., Wang, M., Chung, A.J.: Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab Chip 16(3), 532–542 (2016)CrossRef Wu, Z., Chen, Y., Wang, M., Chung, A.J.: Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab Chip 16(3), 532–542 (2016)CrossRef
62.
go back to reference Brown, D.W., Giles, W.H., Croft, J.B.: White blood cell count: an independent predictor of coronary heart disease mortality among a national cohort. J. Clin. Epidemiol. 54(3), 316–322 (2001)CrossRef Brown, D.W., Giles, W.H., Croft, J.B.: White blood cell count: an independent predictor of coronary heart disease mortality among a national cohort. J. Clin. Epidemiol. 54(3), 316–322 (2001)CrossRef
63.
go back to reference Hou, L., Wang, H., Sartori, S., Gawron, A., Lissowska, J., Bollati, V., Baccarelli, A.: Blood leukocyte DNA hypomethylation and gastric cancer risk in a high-risk Polish population. Int. J. Cancer 127(8), 1866–1874 (2010)CrossRef Hou, L., Wang, H., Sartori, S., Gawron, A., Lissowska, J., Bollati, V., Baccarelli, A.: Blood leukocyte DNA hypomethylation and gastric cancer risk in a high-risk Polish population. Int. J. Cancer 127(8), 1866–1874 (2010)CrossRef
64.
go back to reference Hassan, U., Ghonge, T., Reddy Jr., B., Patel, M., Rappleye, M., Taneja, I., Jensen, T.: A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nat. Commun. 8, 15949 (2017)CrossRef Hassan, U., Ghonge, T., Reddy Jr., B., Patel, M., Rappleye, M., Taneja, I., Jensen, T.: A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nat. Commun. 8, 15949 (2017)CrossRef
65.
go back to reference Cheng, X., Irimia, D., Dixon, M., Sekine, K., Demirci, U., Zamir, L., Toner, M.: A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab Chip 7(2), 170–178 (2007)CrossRef Cheng, X., Irimia, D., Dixon, M., Sekine, K., Demirci, U., Zamir, L., Toner, M.: A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab Chip 7(2), 170–178 (2007)CrossRef
66.
go back to reference Han, K.H., Frazier, A.B.: Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Lab Chip 8(7), 1079–1086 (2008)CrossRef Han, K.H., Frazier, A.B.: Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Lab Chip 8(7), 1079–1086 (2008)CrossRef
67.
go back to reference Yang, J., Huang, Y., Wang, X.B., Becker, F.F., Gascoyne, P.R.: Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. 78(5), 2680–2689 (2000)CrossRef Yang, J., Huang, Y., Wang, X.B., Becker, F.F., Gascoyne, P.R.: Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. 78(5), 2680–2689 (2000)CrossRef
68.
go back to reference Yang, J., Huang, Y., Wang, X., Wang, X.B., Becker, F.F., Gascoyne, P.R.: Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys. J. 76(6), 3307–3314 (1999)CrossRef Yang, J., Huang, Y., Wang, X., Wang, X.B., Becker, F.F., Gascoyne, P.R.: Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys. J. 76(6), 3307–3314 (1999)CrossRef
69.
go back to reference Urbansky, A., Olm, F., Scheding, S., Laurell, T., Lenshof, A.: Label-free separation of leukocyte subpopulations using high throughput multiplex acoustophoresis. Lab Chip 19(8), 1406–1416 (2019)CrossRef Urbansky, A., Olm, F., Scheding, S., Laurell, T., Lenshof, A.: Label-free separation of leukocyte subpopulations using high throughput multiplex acoustophoresis. Lab Chip 19(8), 1406–1416 (2019)CrossRef
70.
go back to reference Grenvall, C., Magnusson, C., Lilja, H., Laurell, T.: Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. Anal. Chem. 87(11), 5596–5604 (2015)CrossRef Grenvall, C., Magnusson, C., Lilja, H., Laurell, T.: Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. Anal. Chem. 87(11), 5596–5604 (2015)CrossRef
71.
go back to reference Petersson, F., Åberg, L., Swärd-Nilsson, A.M., Laurell, T.: Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79(14), 5117–5123 (2007)CrossRef Petersson, F., Åberg, L., Swärd-Nilsson, A.M., Laurell, T.: Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79(14), 5117–5123 (2007)CrossRef
72.
go back to reference Han, K.H., Frazier, A.B.: Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6(2), 265–273 (2006)CrossRef Han, K.H., Frazier, A.B.: Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6(2), 265–273 (2006)CrossRef
73.
go back to reference Qu, B.Y., Wu, Z.Y., Fang, F., Bai, Z.M., Yang, D.Z., Xu, S.K.: A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling. Anal. Bioanal. Chem. 392(7–8), 1317 (2008)CrossRef Qu, B.Y., Wu, Z.Y., Fang, F., Bai, Z.M., Yang, D.Z., Xu, S.K.: A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling. Anal. Bioanal. Chem. 392(7–8), 1317 (2008)CrossRef
74.
go back to reference Ji, H.M., Samper, V., Chen, Y., Heng, C.K., Lim, T.M., Yobas, L.: Silicon-based microfilters for whole blood cell separation. Biomed. Microdevice 10(2), 251–257 (2008)CrossRef Ji, H.M., Samper, V., Chen, Y., Heng, C.K., Lim, T.M., Yobas, L.: Silicon-based microfilters for whole blood cell separation. Biomed. Microdevice 10(2), 251–257 (2008)CrossRef
75.
go back to reference Tripathi, A., Riddell IV, J., Chronis, N.: A Biochip with a 3D microfluidic architecture for trapping white blood cells. Sens. Actuators B: Chem. 186, 244–251 (2013)CrossRef Tripathi, A., Riddell IV, J., Chronis, N.: A Biochip with a 3D microfluidic architecture for trapping white blood cells. Sens. Actuators B: Chem. 186, 244–251 (2013)CrossRef
76.
go back to reference VanDelinder, V., Groisman, A.: Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal. Chem. 79(5), 2023–2030 (2007)CrossRef VanDelinder, V., Groisman, A.: Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal. Chem. 79(5), 2023–2030 (2007)CrossRef
77.
go back to reference Alvankarian, J., Bahadorimehr, A., Yeop Majlis, B.: A pillar-based microfilter for isolation of white blood cells on elastomeric substrate. Biomicrofluidics 7(1), 014102 (2013) Alvankarian, J., Bahadorimehr, A., Yeop Majlis, B.: A pillar-based microfilter for isolation of white blood cells on elastomeric substrate. Biomicrofluidics 7(1), 014102 (2013)
78.
go back to reference Zheng, S., Tai, Y.C., Kasdan, H.: A micro device for separation of erythrocytes and leukocytes in human blood. In: 27th Annual Conference of the 2005 IEEE Engineering in Medicine and Biology, pp. 1024–1027 (2006) Zheng, S., Tai, Y.C., Kasdan, H.: A micro device for separation of erythrocytes and leukocytes in human blood. In: 27th Annual Conference of the 2005 IEEE Engineering in Medicine and Biology, pp. 1024–1027 (2006)
79.
go back to reference Sethu, P., Anahtar, M., Moldawer, L.L., Tompkins, R.G., Toner, M.: Continuous flow microfluidic device for rapid erythrocyte lysis. Anal. Chem. 76(21), 6247–6253 (2004)CrossRef Sethu, P., Anahtar, M., Moldawer, L.L., Tompkins, R.G., Toner, M.: Continuous flow microfluidic device for rapid erythrocyte lysis. Anal. Chem. 76(21), 6247–6253 (2004)CrossRef
80.
go back to reference Chen, J., Chen, D., Yuan, T., Xie, Y., Chen, X.: A microfluidic chip for direct and rapid trapping of white blood cells from whole blood. Biomicrofluidics 7(3), 034106 (2013)CrossRef Chen, J., Chen, D., Yuan, T., Xie, Y., Chen, X.: A microfluidic chip for direct and rapid trapping of white blood cells from whole blood. Biomicrofluidics 7(3), 034106 (2013)CrossRef
81.
go back to reference Kim, M., Mo Jung, S., Lee, K.H., Jun Kang, Y., Yang, S.: A microfluidic device for continuous white blood cell separation and lysis from whole blood. Artif. Organs 34(11), 996–1002 (2010)CrossRef Kim, M., Mo Jung, S., Lee, K.H., Jun Kang, Y., Yang, S.: A microfluidic device for continuous white blood cell separation and lysis from whole blood. Artif. Organs 34(11), 996–1002 (2010)CrossRef
82.
go back to reference Shevkoplyas, S.S., Yoshida, T., Munn, L.L., Bitensky, M.W.: Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. 77(3), 933–937 (2005)CrossRef Shevkoplyas, S.S., Yoshida, T., Munn, L.L., Bitensky, M.W.: Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. 77(3), 933–937 (2005)CrossRef
83.
go back to reference Jain, A., Munn, L.L.: Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip. Lab Chip 11(17), 2941–2947 (2011)CrossRef Jain, A., Munn, L.L.: Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip. Lab Chip 11(17), 2941–2947 (2011)CrossRef
84.
go back to reference Kuan, D.H., Wu, C.C., Su, W.Y., Huang, N.T.: A microfluidic device for simultaneous extraction of plasma, red blood cells, and on-chip white blood cell trapping. Sci. Rep. 8(1), 15345 (2018)CrossRef Kuan, D.H., Wu, C.C., Su, W.Y., Huang, N.T.: A microfluidic device for simultaneous extraction of plasma, red blood cells, and on-chip white blood cell trapping. Sci. Rep. 8(1), 15345 (2018)CrossRef
85.
go back to reference Tan, J.K., Park, S.Y., Leo, H.L., Kim, S.: Continuous separation of white blood cells from whole blood using viscoelastic effects. IEEE Trans. Biomed. Circuits Syst. 11(6), 1431–1437 (2017)CrossRef Tan, J.K., Park, S.Y., Leo, H.L., Kim, S.: Continuous separation of white blood cells from whole blood using viscoelastic effects. IEEE Trans. Biomed. Circuits Syst. 11(6), 1431–1437 (2017)CrossRef
86.
go back to reference Yamada, M., Seki, M.: Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11), 1233–1239 (2005)CrossRef Yamada, M., Seki, M.: Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11), 1233–1239 (2005)CrossRef
87.
go back to reference Cupelli, C., Borchardt, T., Steiner, T., Paust, N., Zengerle, R., Santer, M.: Leukocyte enrichment based on a modified pinched flow fractionation approach. Microfluid. Nanofluid. 14(3–4), 551–563 (2013)CrossRef Cupelli, C., Borchardt, T., Steiner, T., Paust, N., Zengerle, R., Santer, M.: Leukocyte enrichment based on a modified pinched flow fractionation approach. Microfluid. Nanofluid. 14(3–4), 551–563 (2013)CrossRef
88.
go back to reference Choi, J., Hyun, J.C., Yang, S.: On-chip extraction of intracellular molecules in white blood cells from whole blood. Sci. Rep. 14(5), 15167 (2015)CrossRef Choi, J., Hyun, J.C., Yang, S.: On-chip extraction of intracellular molecules in white blood cells from whole blood. Sci. Rep. 14(5), 15167 (2015)CrossRef
89.
go back to reference Nivedita, N., Papautsky, I.: Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics 7(5), 054101 (2013)CrossRef Nivedita, N., Papautsky, I.: Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics 7(5), 054101 (2013)CrossRef
90.
go back to reference Sollier, E., Amini, H., Go, D.E., Sandoz, P.A., Owsley, K., Di Carlo, D.: Inertial microfluidic programming of microparticle-laden flows for solution transfer around cells and particles. Microfluid. Nanofluid. 19(1), 53–65 (2015)CrossRef Sollier, E., Amini, H., Go, D.E., Sandoz, P.A., Owsley, K., Di Carlo, D.: Inertial microfluidic programming of microparticle-laden flows for solution transfer around cells and particles. Microfluid. Nanofluid. 19(1), 53–65 (2015)CrossRef
91.
go back to reference Wu, L., Guan, G., Hou, H.W., Bhagat, A.A.S., Han, J.: Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal. Chem. 84(21), 9324–9331 (2012)CrossRef Wu, L., Guan, G., Hou, H.W., Bhagat, A.A.S., Han, J.: Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal. Chem. 84(21), 9324–9331 (2012)CrossRef
92.
go back to reference Zhang, J., Yuan, D., Sluyter, R., Yan, S., Zhao, Q., Xia, H., Li, W.: High-throughput separation of white blood cells from whole blood using inertial microfluidics. IEEE Trans. Biomed. Circuits Syst. 11(6), 1422–1430 (2017)CrossRef Zhang, J., Yuan, D., Sluyter, R., Yan, S., Zhao, Q., Xia, H., Li, W.: High-throughput separation of white blood cells from whole blood using inertial microfluidics. IEEE Trans. Biomed. Circuits Syst. 11(6), 1422–1430 (2017)CrossRef
93.
go back to reference Tasadduq, B., Lam, W., Alexeev, A., Sarioglu, A.F., Sulchek, T.: Enhancing size based size separation through vertical focus microfluidics using secondary flow in a ridged microchannel. Sci. Rep. 7(1), 17375 (2017)CrossRef Tasadduq, B., Lam, W., Alexeev, A., Sarioglu, A.F., Sulchek, T.: Enhancing size based size separation through vertical focus microfluidics using secondary flow in a ridged microchannel. Sci. Rep. 7(1), 17375 (2017)CrossRef
94.
go back to reference Agrawal, N., Toner, M., Irimia, D.: Neutrophil migration assay from a drop of blood. Lab Chip 8(12), 2054–2061 (2008)CrossRef Agrawal, N., Toner, M., Irimia, D.: Neutrophil migration assay from a drop of blood. Lab Chip 8(12), 2054–2061 (2008)CrossRef
95.
go back to reference Hamza, B., Irimia, D.: Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab Chip 15(12), 2625–2633 (2015)CrossRef Hamza, B., Irimia, D.: Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab Chip 15(12), 2625–2633 (2015)CrossRef
96.
go back to reference Sethu, P., Sin, A., Toner, M.: Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6(1), 83–89 (2006)CrossRef Sethu, P., Sin, A., Toner, M.: Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6(1), 83–89 (2006)CrossRef
97.
go back to reference Mauk, M., Song, J., Bau, H.H., Gross, R., Bushman, F.D., Collman, R.G., Liu, C.: Miniaturized devices for point of care molecular detection of HIV. Lab Chip 17(3), 382–394 (2017)CrossRef Mauk, M., Song, J., Bau, H.H., Gross, R., Bushman, F.D., Collman, R.G., Liu, C.: Miniaturized devices for point of care molecular detection of HIV. Lab Chip 17(3), 382–394 (2017)CrossRef
98.
go back to reference Manoto, S., Lugongolo, M., Govender, U., Mthunzi-Kufa, P.: Point of care diagnostics for HIV in resource limited settings: an overview. Medicina 54(1), 3 (2018) Manoto, S., Lugongolo, M., Govender, U., Mthunzi-Kufa, P.: Point of care diagnostics for HIV in resource limited settings: an overview. Medicina 54(1), 3 (2018)
99.
go back to reference Arora, D.R., Maheshwari, M., Arora, B.: Rapid point-of-care testing for detection of HIV and clinical monitoring. ISRN AIDS (2013) Arora, D.R., Maheshwari, M., Arora, B.: Rapid point-of-care testing for detection of HIV and clinical monitoring. ISRN AIDS (2013)
100.
go back to reference Laxmi, V., Tripathi, S., Joshi, S.S., Agrawal, A.: Microfluidic techniques for platelet separation and enrichment. J. Indian Inst. Sci. 98(2), 185–200 (2018)CrossRef Laxmi, V., Tripathi, S., Joshi, S.S., Agrawal, A.: Microfluidic techniques for platelet separation and enrichment. J. Indian Inst. Sci. 98(2), 185–200 (2018)CrossRef
101.
go back to reference Choi, S., Ku, T., Song, S., Choi, C., Park, J.K.: Hydrophoretic high-throughput selection of platelets in physiological shear-stress range. Lab Chip 11(3), 413–418 (2011)CrossRef Choi, S., Ku, T., Song, S., Choi, C., Park, J.K.: Hydrophoretic high-throughput selection of platelets in physiological shear-stress range. Lab Chip 11(3), 413–418 (2011)CrossRef
102.
go back to reference Leslie, M.: Beyond clotting: the powers of platelets. Science 328, 562–564 (2010)CrossRef Leslie, M.: Beyond clotting: the powers of platelets. Science 328, 562–564 (2010)CrossRef
103.
go back to reference Von Hundelshausen, P., Weber, C.: Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ. Res. 100(1), 27–40 (2007)CrossRef Von Hundelshausen, P., Weber, C.: Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ. Res. 100(1), 27–40 (2007)CrossRef
104.
go back to reference Huebsch, L.B., Harker, L.A.: Disorders of platelet function: mechanisms, diagnosis and management. West. J. Med. 134(2), 109 (1981) Huebsch, L.B., Harker, L.A.: Disorders of platelet function: mechanisms, diagnosis and management. West. J. Med. 134(2), 109 (1981)
105.
go back to reference Pommer, M.S., Zhang, Y., Keerthi, N., Chen, D., Thomson, J.A., Meinhart, C.D., Soh, H.T.: Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29(6), 1213–1218 (2008)CrossRef Pommer, M.S., Zhang, Y., Keerthi, N., Chen, D., Thomson, J.A., Meinhart, C.D., Soh, H.T.: Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29(6), 1213–1218 (2008)CrossRef
106.
go back to reference Piacentini, N., Mernier, G., Tornay, R., Renaud, P.: Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3), 034122 (2011)CrossRef Piacentini, N., Mernier, G., Tornay, R., Renaud, P.: Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3), 034122 (2011)CrossRef
107.
go back to reference Nam, J., Lim, H., Kim, D., Shin, S.: Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip 11(19), 3361–3364 (2011)CrossRef Nam, J., Lim, H., Kim, D., Shin, S.: Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip 11(19), 3361–3364 (2011)CrossRef
108.
go back to reference Chen, Y., Wu, M., Ren, L., Liu, J., Whitley, P.H., Wang, L., Huang, T.J.: High-throughput acoustic separation of platelets from whole blood. Lab Chip 16(18), 3466–3472 (2016)CrossRef Chen, Y., Wu, M., Ren, L., Liu, J., Whitley, P.H., Wang, L., Huang, T.J.: High-throughput acoustic separation of platelets from whole blood. Lab Chip 16(18), 3466–3472 (2016)CrossRef
109.
go back to reference Dykes, J., Lenshof, A., Astrand-Grundstrom, B., Laurell, T., Scheding, S.: Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS One 6(8), e23074 (2011)CrossRef Dykes, J., Lenshof, A., Astrand-Grundstrom, B., Laurell, T., Scheding, S.: Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS One 6(8), e23074 (2011)CrossRef
110.
go back to reference Gu, Y., Chen, C., Wang, Z., Huang, P.H., Fu, H., Wang, L., Wu, M., Chen, Y., Gao, T., Gong, J., Kwun, J.: Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation. Lab Chip 19(3), 394–402 (2019)CrossRef Gu, Y., Chen, C., Wang, Z., Huang, P.H., Fu, H., Wang, L., Wu, M., Chen, Y., Gao, T., Gong, J., Kwun, J.: Plastic-based acoustofluidic devices for high-throughput, biocompatible platelet separation. Lab Chip 19(3), 394–402 (2019)CrossRef
111.
go back to reference Di Carlo, D., Edd, J.F., Irimia, D., Tompkins, R.G., Toner, M.: Equilibrium separation and filtration of particles using differential inertial focusing. Anal. Chem. 80(6), 2204–2211 (2008)CrossRef Di Carlo, D., Edd, J.F., Irimia, D., Tompkins, R.G., Toner, M.: Equilibrium separation and filtration of particles using differential inertial focusing. Anal. Chem. 80(6), 2204–2211 (2008)CrossRef
112.
go back to reference Choi, S., Song, S., Choi, C., Park, J.K.: Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7(11), 1532–1538 (2007)CrossRef Choi, S., Song, S., Choi, C., Park, J.K.: Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7(11), 1532–1538 (2007)CrossRef
113.
go back to reference Li, N., Kamei, D.T., Ho, C.M.: On-chip continuous blood cell subtype separation by deterministic lateral displacement, In: 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2007. NEMS’07, pp. 932–936 (2007) Li, N., Kamei, D.T., Ho, C.M.: On-chip continuous blood cell subtype separation by deterministic lateral displacement, In: 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2007. NEMS’07, pp. 932–936 (2007)
114.
go back to reference Inglis, D.W., Morton, K.J., Davis, J.A., Zieziulewicz, T.J., Lawrence, D.A., Austin, R.H., Sturm, J.C.: Microfluidic device for label-free measurement of platelet activation. Lab Chip 8(6), 925–931 (2008)CrossRef Inglis, D.W., Morton, K.J., Davis, J.A., Zieziulewicz, T.J., Lawrence, D.A., Austin, R.H., Sturm, J.C.: Microfluidic device for label-free measurement of platelet activation. Lab Chip 8(6), 925–931 (2008)CrossRef
115.
go back to reference Geislinger, T.M., Eggart, B., Braunmüller, S., Schmid, L., Franke, T.: Separation of blood cells using hydrodynamic lift. Appl. Phys. Lett. 100(18), 183701 (2012)CrossRef Geislinger, T.M., Eggart, B., Braunmüller, S., Schmid, L., Franke, T.: Separation of blood cells using hydrodynamic lift. Appl. Phys. Lett. 100(18), 183701 (2012)CrossRef
116.
go back to reference Dickson, M.N., Amar, L., Hill, M., Schwartz, J., Leonard, E.F.: A scalable, micropore, platelet rich plasma separation device. Biomed. Microdevices 14(6), 1095–1102 (2012)CrossRef Dickson, M.N., Amar, L., Hill, M., Schwartz, J., Leonard, E.F.: A scalable, micropore, platelet rich plasma separation device. Biomed. Microdevices 14(6), 1095–1102 (2012)CrossRef
117.
go back to reference Basabe-Desmonts, L., Ramstrom, S., Meade, G., O’neill, S., Riaz, A., Lee, L.P., Kenny, D.: Single-step separation of platelets from whole blood coupled with digital quantification by interfacial platelet cytometry (iPC). Langmuir 26(18), 14700–14706 (2010) Basabe-Desmonts, L., Ramstrom, S., Meade, G., O’neill, S., Riaz, A., Lee, L.P., Kenny, D.: Single-step separation of platelets from whole blood coupled with digital quantification by interfacial platelet cytometry (iPC). Langmuir 26(18), 14700–14706 (2010)
118.
go back to reference Harris, L.F., Castro-López, V., Killard, A.J.: Coagulation monitoring devices: past, present, and future at the point of care. TrAC Trends Anal. Chem. 50, 85–95 (2013)CrossRef Harris, L.F., Castro-López, V., Killard, A.J.: Coagulation monitoring devices: past, present, and future at the point of care. TrAC Trends Anal. Chem. 50, 85–95 (2013)CrossRef
119.
go back to reference Li, H., Steckl, A.J.: Paper microfluidics for point-of-care blood-based analysis and diagnostics. Anal. Chem. 91(1), 352–371 (2018)CrossRef Li, H., Steckl, A.J.: Paper microfluidics for point-of-care blood-based analysis and diagnostics. Anal. Chem. 91(1), 352–371 (2018)CrossRef
120.
go back to reference Santos, S.M., Zorn, A., Guttenberg, Z., Willems, B.P., Klaffling, C., Nelson, K., Klinkhardt, U., Harder, S.: A novel l-fluidic whole blood coagulation assay based on Rayleigh surface-acoustic waves as a point-of-care method to detect anticoagulants. Biomicrofluidics 7, 56502 (2013)CrossRef Santos, S.M., Zorn, A., Guttenberg, Z., Willems, B.P., Klaffling, C., Nelson, K., Klinkhardt, U., Harder, S.: A novel l-fluidic whole blood coagulation assay based on Rayleigh surface-acoustic waves as a point-of-care method to detect anticoagulants. Biomicrofluidics 7, 56502 (2013)CrossRef
121.
go back to reference Nam, J., Choi, H., Kim, J.Y., Jang, W., Lim, C.S.: Lamb wave-based blood coagulation test. Sens. Actuators B: Chem. 263, 190–195 (2018)CrossRef Nam, J., Choi, H., Kim, J.Y., Jang, W., Lim, C.S.: Lamb wave-based blood coagulation test. Sens. Actuators B: Chem. 263, 190–195 (2018)CrossRef
122.
go back to reference Xu, W., Appel, J., Chae, J.: Real-time monitoring of whole blood coagulation using a microfabricated contour-mode film bulk acoustic resonator. J. Microelectromech. Syst. 21(2), 302–307 (2012)CrossRef Xu, W., Appel, J., Chae, J.: Real-time monitoring of whole blood coagulation using a microfabricated contour-mode film bulk acoustic resonator. J. Microelectromech. Syst. 21(2), 302–307 (2012)CrossRef
123.
go back to reference Li, H., Han, D., Pauletti, G.M., Steckl, A.J.: Blood coagulation screening using a paper-based microfluidic lateral flow device. Lab Chip 14(20), 4035–4041 (2014)CrossRef Li, H., Han, D., Pauletti, G.M., Steckl, A.J.: Blood coagulation screening using a paper-based microfluidic lateral flow device. Lab Chip 14(20), 4035–4041 (2014)CrossRef
124.
go back to reference Li, H., Han, D., Hegener, M.A., Pauletti, G.M., Steckl, A.J.: Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices. Biomicrofluidics 11(2), 024116 (2017)CrossRef Li, H., Han, D., Hegener, M.A., Pauletti, G.M., Steckl, A.J.: Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices. Biomicrofluidics 11(2), 024116 (2017)CrossRef
125.
go back to reference Low, W.S., Abas, W., Bakar, W.A.: Benchtop technologies for circulating tumor cells separation based on biophysical properties. Biomed. Res. Int. 2015, 1–22 (2015) Low, W.S., Abas, W., Bakar, W.A.: Benchtop technologies for circulating tumor cells separation based on biophysical properties. Biomed. Res. Int. 2015, 1–22 (2015)
126.
go back to reference Cho, H., Kim, J., Song, H., Sohn, K.Y., Jeon, M., Han, K.H.: Microfluidic technologies for circulating tumor cell isolation. Analyst 143(13), 2936–2970 (2018)CrossRef Cho, H., Kim, J., Song, H., Sohn, K.Y., Jeon, M., Han, K.H.: Microfluidic technologies for circulating tumor cell isolation. Analyst 143(13), 2936–2970 (2018)CrossRef
127.
go back to reference Gwak, H., Kim, J., Kashefi-Kheyrabadi, L., Kwak, B., Hyun, K.A., Jung, H.I.: Progress in circulating tumor cell research using microfluidic devices. Micromachines 9(7), 353 (2018)CrossRef Gwak, H., Kim, J., Kashefi-Kheyrabadi, L., Kwak, B., Hyun, K.A., Jung, H.I.: Progress in circulating tumor cell research using microfluidic devices. Micromachines 9(7), 353 (2018)CrossRef
128.
go back to reference Joosse, S.A., Gorges, T.M., Pantel, K.: Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol. Med. 7(1), 1–11 (2015)CrossRef Joosse, S.A., Gorges, T.M., Pantel, K.: Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol. Med. 7(1), 1–11 (2015)CrossRef
129.
go back to reference Fawcett, D.W., Vallee, B.L., Soule, M.H.: A method for concentration and segregation of malignant cells from bloody, pleural, and peritoneal fluids. Science 111(2872), 34–36 (1950)CrossRef Fawcett, D.W., Vallee, B.L., Soule, M.H.: A method for concentration and segregation of malignant cells from bloody, pleural, and peritoneal fluids. Science 111(2872), 34–36 (1950)CrossRef
130.
go back to reference Seal, S.H.: Silicone flotation: a simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer 12(3), 590–595 (1959)CrossRef Seal, S.H.: Silicone flotation: a simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer 12(3), 590–595 (1959)CrossRef
131.
go back to reference Johnson, G.R.: The use of discontinuous percoll gradients to separate populations of cells from human bone marrow and peripheral blood. J. Immunol. Methods 66(1), 9–16 (1984) Johnson, G.R.: The use of discontinuous percoll gradients to separate populations of cells from human bone marrow and peripheral blood. J. Immunol. Methods 66(1), 9–16 (1984)
132.
go back to reference Lim, L.S., Hu, M., Huang, M.C., Cheong, W.C., Gan, A.T., Looi, X.L., Leong, S.M., Koay, E.S., Li, M.H.: Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lab Chip 12(21), 4388–4396 (2012)CrossRef Lim, L.S., Hu, M., Huang, M.C., Cheong, W.C., Gan, A.T., Looi, X.L., Leong, S.M., Koay, E.S., Li, M.H.: Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lab Chip 12(21), 4388–4396 (2012)CrossRef
133.
go back to reference Adams, D.L., Zhu, P., Makarova, O.V., Martin, S.S., Charpentier, M., Chumsri, S., Li, S., Amstutz, P., Tang, C.M.: The systematic study of circulating tumor cell isolation using lithographic microfilters. RSC Adv. 4(9), 4334–4342 (2014)CrossRef Adams, D.L., Zhu, P., Makarova, O.V., Martin, S.S., Charpentier, M., Chumsri, S., Li, S., Amstutz, P., Tang, C.M.: The systematic study of circulating tumor cell isolation using lithographic microfilters. RSC Adv. 4(9), 4334–4342 (2014)CrossRef
134.
go back to reference Kim, E.H., Lee, J.K., Kim, B.C., Rhim, S.H., Kim, J.W., Kim, K.H., Jung, S.M., Park, P.S., Park, H.C., Lee, J., Jeon, B.H.: Enrichment of cancer cells from whole blood using a microfabricated porous filter. Anal. Biochem. 440(1), 114–116 (2013)CrossRef Kim, E.H., Lee, J.K., Kim, B.C., Rhim, S.H., Kim, J.W., Kim, K.H., Jung, S.M., Park, P.S., Park, H.C., Lee, J., Jeon, B.H.: Enrichment of cancer cells from whole blood using a microfabricated porous filter. Anal. Biochem. 440(1), 114–116 (2013)CrossRef
135.
go back to reference Kim, T.H., Lim, M., Park, J., Oh, J.M., Kim, H., Jeong, H., Lee, S.J., Park, H.C., Jung, S., Kim, B.C., Lee, K.: FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface. Anal. Chem. 89(2), 1155–1162 (2016)CrossRef Kim, T.H., Lim, M., Park, J., Oh, J.M., Kim, H., Jeong, H., Lee, S.J., Park, H.C., Jung, S., Kim, B.C., Lee, K.: FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface. Anal. Chem. 89(2), 1155–1162 (2016)CrossRef
136.
go back to reference Coumans, F.A., van Dalum, G., Beck, M., Terstappen, L.W.: Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One 8(4), e61770 (2013)CrossRef Coumans, F.A., van Dalum, G., Beck, M., Terstappen, L.W.: Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One 8(4), e61770 (2013)CrossRef
137.
go back to reference Zhou, M.D., Hao, S., Williams, A.J., Harouaka, R.A., Schrand, B., Rawal, S., Ao, Z., Brenneman, R., Gilboa, E., Lu, B., Wang, S.: Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells. Sci. Rep. 4(7392), 1–10 (2014) Zhou, M.D., Hao, S., Williams, A.J., Harouaka, R.A., Schrand, B., Rawal, S., Ao, Z., Brenneman, R., Gilboa, E., Lu, B., Wang, S.: Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells. Sci. Rep. 4(7392), 1–10 (2014)
138.
go back to reference Chung, J., Shao, H., Reiner, T., Issadore, D., Weissleder, R., Lee, H.: Microfluidic cell sorter (FCS) for on-chip capture and analysis of single cells. Adv. Healthc. Mater. 4, 432–436 (2012)CrossRef Chung, J., Shao, H., Reiner, T., Issadore, D., Weissleder, R., Lee, H.: Microfluidic cell sorter (FCS) for on-chip capture and analysis of single cells. Adv. Healthc. Mater. 4, 432–436 (2012)CrossRef
139.
go back to reference Hvichia, G.E., Parveen, Z., Wagner, C., Janning, M., Quidde, J., Stein, A., Müller, V., Loges, S., Neves, R.P., Stoecklein, N.H., Wikman, H.: A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int. J. Cancer 138(12), 2894–2904 (2016)CrossRef Hvichia, G.E., Parveen, Z., Wagner, C., Janning, M., Quidde, J., Stein, A., Müller, V., Loges, S., Neves, R.P., Stoecklein, N.H., Wikman, H.: A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int. J. Cancer 138(12), 2894–2904 (2016)CrossRef
140.
go back to reference Xu, L., Mao, X., Imrali, A., Syed, F., Mutsvangwa, K., Berney, D., Cathcart, P., Hines, J., Shamash, J., Lu, Y.J.: Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS One 10(9), e0138032 (2015)CrossRef Xu, L., Mao, X., Imrali, A., Syed, F., Mutsvangwa, K., Berney, D., Cathcart, P., Hines, J., Shamash, J., Lu, Y.J.: Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS One 10(9), e0138032 (2015)CrossRef
141.
go back to reference Loutherback, K., D’Silva, J., Liu, L., Wu, A., Austin, R.H., Sturm, J.C.: Deterministic separation of cancer cells from blood at 10 mL/min, AIP Adv. 2(4), 1–7 Loutherback, K., D’Silva, J., Liu, L., Wu, A., Austin, R.H., Sturm, J.C.: Deterministic separation of cancer cells from blood at 10 mL/min, AIP Adv. 2(4), 1–7
142.
go back to reference Hou, H.W., Warkiani, M.E., Khoo, B.L., Li, Z.R., Soo, R.A., Tan, D.S., Lim, W.T., Han, J., Bhagat, A.A., Lim, C.T.: Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013)CrossRef Hou, H.W., Warkiani, M.E., Khoo, B.L., Li, Z.R., Soo, R.A., Tan, D.S., Lim, W.T., Han, J., Bhagat, A.A., Lim, C.T.: Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3, 1259 (2013)CrossRef
143.
go back to reference Warkiani, M.E., Guan, G., Luan, K.B., Lee, W.C., Bhagat, A.A., Chaudhuri, P.K., Tan, D.S., Lim, W.T., Lee, S.C., Chen, P.C., Lim, C.T.: Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14(1), 128–137 (2014)CrossRef Warkiani, M.E., Guan, G., Luan, K.B., Lee, W.C., Bhagat, A.A., Chaudhuri, P.K., Tan, D.S., Lim, W.T., Lee, S.C., Chen, P.C., Lim, C.T.: Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14(1), 128–137 (2014)CrossRef
144.
go back to reference Geislinger, T.M., Franke, T.: Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift. Biomicrofluidics 7(4), 1–9 (2013)CrossRef Geislinger, T.M., Franke, T.: Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift. Biomicrofluidics 7(4), 1–9 (2013)CrossRef
145.
go back to reference Augustsson, P., Magnusson, C., Nordin, M., Lilja, H., Laurell, T.: Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal. Chem. 84(18), 7954–7962 (2012)CrossRef Augustsson, P., Magnusson, C., Nordin, M., Lilja, H., Laurell, T.: Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal. Chem. 84(18), 7954–7962 (2012)CrossRef
146.
go back to reference Fabbri, F., Carloni, S., Zoli, W., Ulivi, P., Gallerani, G., Fici, P., Chiadini, E., Passardi, A., Frassineti, G.L., Ragazzini, A., Amadori, D.: Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 335(1), 225–231 (2013)CrossRef Fabbri, F., Carloni, S., Zoli, W., Ulivi, P., Gallerani, G., Fici, P., Chiadini, E., Passardi, A., Frassineti, G.L., Ragazzini, A., Amadori, D.: Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 335(1), 225–231 (2013)CrossRef
147.
go back to reference Moon, H.S., Kwon, K., Kime, S.I., Han, H., Sohn, J., Lee, S., Jung, H.I.: Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11(6), 1118–1125 (2011) Moon, H.S., Kwon, K., Kime, S.I., Han, H., Sohn, J., Lee, S., Jung, H.I.: Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11(6), 1118–1125 (2011)
148.
go back to reference Huang, C., Liu, H., Bander, N.H., Kirby, B.J.: Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system. Biomed. Microdevice 15(6), 941–948 (2013)CrossRef Huang, C., Liu, H., Bander, N.H., Kirby, B.J.: Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system. Biomed. Microdevice 15(6), 941–948 (2013)CrossRef
149.
go back to reference Li, P., Mao, Z., Peng, Z., Zhou, L., Chen, Y., Huang, P.H., Truica, C.I., Drabick, J.J., El-Deiry, W.S., Dao, M., Suresh, S.: Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. 112(16), 4970–4975 (2015)CrossRef Li, P., Mao, Z., Peng, Z., Zhou, L., Chen, Y., Huang, P.H., Truica, C.I., Drabick, J.J., El-Deiry, W.S., Dao, M., Suresh, S.: Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. 112(16), 4970–4975 (2015)CrossRef
150.
go back to reference Farokhzad, O.C., Jon, S., Khademhosseini, A., Tran, T.N., LaVan, D.A., Langer, R.: Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64(21), 7668–7672 (2004)CrossRef Farokhzad, O.C., Jon, S., Khademhosseini, A., Tran, T.N., LaVan, D.A., Langer, R.: Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64(21), 7668–7672 (2004)CrossRef
151.
go back to reference Paterlini-Brechot, P., Benali, N.L.: Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 253(2), 180–204 (2007)CrossRef Paterlini-Brechot, P., Benali, N.L.: Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 253(2), 180–204 (2007)CrossRef
152.
go back to reference Riethdorf, S., Fritsche, H., Müller, V., Rau, T., Schindlbeck, C., Rack, B., Janni, W., Coith, C., Beck, K., Jänicke, F., Jackson, S.: Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin. Cancer Res. 13(3), 920–928 (2007)CrossRef Riethdorf, S., Fritsche, H., Müller, V., Rau, T., Schindlbeck, C., Rack, B., Janni, W., Coith, C., Beck, K., Jänicke, F., Jackson, S.: Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin. Cancer Res. 13(3), 920–928 (2007)CrossRef
153.
go back to reference Hoshino, K., Huang, Y.Y., Lane, N., Huebschman, M., Uhr, J.W., Frenkel, E.P., Zhang, X.: Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11(20), 3449–3457 (2011)CrossRef Hoshino, K., Huang, Y.Y., Lane, N., Huebschman, M., Uhr, J.W., Frenkel, E.P., Zhang, X.: Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11(20), 3449–3457 (2011)CrossRef
154.
go back to reference Choi, S., Karp, J.M., Karnik, R.: Cell sorting by deterministic cell rolling. Lab Chip 12(8), 1427–1430 (2012)CrossRef Choi, S., Karp, J.M., Karnik, R.: Cell sorting by deterministic cell rolling. Lab Chip 12(8), 1427–1430 (2012)CrossRef
Metadata
Title
Current Status of the Development of Blood-Based Point-of-Care Microdevices
Authors
Vijai Laxmi
Siddhartha Tripathi
Amit Agrawal
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5712-5_8

Premium Partners