Skip to main content
Top
Published in: Journal of Materials Science 2/2016

21-09-2015 | Review

CVD growth of 1D and 2D sp2 carbon nanomaterials

Authors: Jinbo Pang, Alicja Bachmatiuk, Imad Ibrahim, Lei Fu, Daniela Placha, Grazyna Simha Martynkova, Barbara Trzebicka, Thomas Gemming, Juergen Eckert, Mark H. Rümmeli

Published in: Journal of Materials Science | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The discovery of graphene and carbon nanotubes (rolled-up graphene) has excited the world because their extraordinary properties promise tremendous developments in many areas. Like any materials with application potential, it needs to be fabricated in an economically viable manner and at the same time provides the necessary quality for relevant applications. Graphene and carbon nanotubes are no exception to this. In both cases, chemical vapor deposition (CVD) has emerged as the dominant synthesis route since it is already a well-established process both in industry and laboratories. In this work, we review the CVD fabrication of graphene and carbon nanotubes. Initially, we briefly introduce the materials and the CVD process. We then discuss pretreatment steps prior to the CVD reaction. The discussion then switches to the CVD process, provides comparative data for thermal CVD and plasma-enhanced CVD, and includes coverage of kinetics, thermodynamics, catalyst choice, and other aspects of growth as well as post production treatments. Finally, conclusions are drawn and presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH (2013) Graphene fundamentals and emergent applications, 1st edn. Elsevier, Waltham Warner JH, Schäffel F, Bachmatiuk A, Rümmeli MH (2013) Graphene fundamentals and emergent applications, 1st edn. Elsevier, Waltham
2.
go back to reference Rummeli MH, Ayala P, Pichler T (2010) Carbon nanotubes and related structures: production and formation. In: Guldi DM, Martín N (eds) Carbon nanotub. Relat. Struct. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, pp 1–21 Rummeli MH, Ayala P, Pichler T (2010) Carbon nanotubes and related structures: production and formation. In: Guldi DM, Martín N (eds) Carbon nanotub. Relat. Struct. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, pp 1–21
3.
go back to reference Liu Z, Liu JZ, Cheng Y et al (2012) Interlayer binding energy of graphite: a mesoscopic determination from deformation. Phys Rev B 85:205418CrossRef Liu Z, Liu JZ, Cheng Y et al (2012) Interlayer binding energy of graphite: a mesoscopic determination from deformation. Phys Rev B 85:205418CrossRef
4.
go back to reference Rümmeli MH, Rocha CG, Ortmann F et al (2011) Graphene: piecing it together. Adv Mater 23:4471–4490CrossRef Rümmeli MH, Rocha CG, Ortmann F et al (2011) Graphene: piecing it together. Adv Mater 23:4471–4490CrossRef
5.
go back to reference Fallahazad B, Hao Y, Lee K et al (2012) Quantum Hall effect in Bernal stacked and twisted bilayer graphene grown on Cu by chemical vapor deposition. Phys Rev B 85:1–5CrossRef Fallahazad B, Hao Y, Lee K et al (2012) Quantum Hall effect in Bernal stacked and twisted bilayer graphene grown on Cu by chemical vapor deposition. Phys Rev B 85:1–5CrossRef
6.
go back to reference Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379CrossRef Novoselov KS, Jiang Z, Zhang Y et al (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379CrossRef
7.
go back to reference Han P, Akagi K, Canova FF et al (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181–9187CrossRef Han P, Akagi K, Canova FF et al (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181–9187CrossRef
8.
go back to reference Sangwan VK, Jariwala D, Everaerts K et al (2014) Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. Appl Phys Lett 104:083503CrossRef Sangwan VK, Jariwala D, Everaerts K et al (2014) Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. Appl Phys Lett 104:083503CrossRef
9.
go back to reference Ang PK, Li A, Jaiswal M et al (2011) Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett 11:5240–5246CrossRef Ang PK, Li A, Jaiswal M et al (2011) Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett 11:5240–5246CrossRef
10.
go back to reference Yan Z, Peng Z, Sun Z et al (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5:8187–8192CrossRef Yan Z, Peng Z, Sun Z et al (2011) Growth of bilayer graphene on insulating substrates. ACS Nano 5:8187–8192CrossRef
11.
go back to reference Liu L, Zhou H, Cheng R et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6:8241–8249CrossRef Liu L, Zhou H, Cheng R et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6:8241–8249CrossRef
12.
go back to reference Wu Y, Chou H, Ji H et al (2012) Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. ACS Nano 6:7731–7738CrossRef Wu Y, Chou H, Ji H et al (2012) Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. ACS Nano 6:7731–7738CrossRef
13.
go back to reference Yan K, Peng H, Zhou Y et al (2011) Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett 11:1106–1110CrossRef Yan K, Peng H, Zhou Y et al (2011) Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett 11:1106–1110CrossRef
14.
go back to reference Xia F, Farmer DB, Lin YM, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10:715–718CrossRef Xia F, Farmer DB, Lin YM, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10:715–718CrossRef
15.
go back to reference Yu WJ, Liao L, Chae SH et al (2011) Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Nano Lett 11:4759–4763CrossRef Yu WJ, Liao L, Chae SH et al (2011) Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. Nano Lett 11:4759–4763CrossRef
16.
go back to reference Bachmatiuk A, Mendes RG, Hirsch C et al (2013) Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial. ACS Nano 7:10552–10562CrossRef Bachmatiuk A, Mendes RG, Hirsch C et al (2013) Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial. ACS Nano 7:10552–10562CrossRef
17.
go back to reference Deng J, Chen L, Sun Y et al (2015) Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon 92:177–184CrossRef Deng J, Chen L, Sun Y et al (2015) Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon 92:177–184CrossRef
18.
go back to reference Guo J, Zhang T, Hu C, Fu L (2015) A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors. Nanoscale 7:1290–1295CrossRef Guo J, Zhang T, Hu C, Fu L (2015) A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors. Nanoscale 7:1290–1295CrossRef
19.
go back to reference Hu X, Ma M, Zeng M et al (2014) Supercritical carbon dioxide anchored Fe3O4 nanoparticles on graphene foam and lithium battery performance. ACS Appl Mater Interfaces 6:22527–22533CrossRef Hu X, Ma M, Zeng M et al (2014) Supercritical carbon dioxide anchored Fe3O4 nanoparticles on graphene foam and lithium battery performance. ACS Appl Mater Interfaces 6:22527–22533CrossRef
20.
go back to reference Liu J, Leng X, Xiao Y et al (2015) 3D nitrogen-doped graphene/β-cyclodextrin: host–guest interactions for electrochemical sensing. Nanoscale 7:11922–11927CrossRef Liu J, Leng X, Xiao Y et al (2015) 3D nitrogen-doped graphene/β-cyclodextrin: host–guest interactions for electrochemical sensing. Nanoscale 7:11922–11927CrossRef
21.
go back to reference Bachmatiuk A, Boeckl J, Smith H et al (2015) Vertical graphene growth from amorphous carbon films using oxidizing gases. J Phys Chem C 119:17965–17970CrossRef Bachmatiuk A, Boeckl J, Smith H et al (2015) Vertical graphene growth from amorphous carbon films using oxidizing gases. J Phys Chem C 119:17965–17970CrossRef
22.
go back to reference Davami K, Shaygan M, Kheirabi N et al (2014) Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72:372–380CrossRef Davami K, Shaygan M, Kheirabi N et al (2014) Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72:372–380CrossRef
23.
go back to reference Zhao J, Shaygan M, Eckert J et al (2014) A growth mechanism for free-standing vertical graphene. Nano Lett 14:3064–3071CrossRef Zhao J, Shaygan M, Eckert J et al (2014) A growth mechanism for free-standing vertical graphene. Nano Lett 14:3064–3071CrossRef
24.
go back to reference Park H, Chang S, Jean J et al (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13:233–239CrossRef Park H, Chang S, Jean J et al (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13:233–239CrossRef
25.
go back to reference Chattopadhyay S, Lipson AL, Karmel HJ et al (2012) In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode. Chem Mater 24:3038–3043CrossRef Chattopadhyay S, Lipson AL, Karmel HJ et al (2012) In situ X-ray study of the solid electrolyte interphase (SEI) formation on graphene as a model Li-ion battery anode. Chem Mater 24:3038–3043CrossRef
26.
go back to reference Cheng Y, Lu S, Zhang H et al (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211CrossRef Cheng Y, Lu S, Zhang H et al (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12:4206–4211CrossRef
27.
go back to reference Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870CrossRef Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870CrossRef
28.
go back to reference Lu S, Cheng Y, Wu X, Liu J (2013) Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett 13:2485–2489CrossRef Lu S, Cheng Y, Wu X, Liu J (2013) Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett 13:2485–2489CrossRef
29.
go back to reference Ma Y, Li P, Sedloff JW et al (2015) conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 9:1352–1359CrossRef Ma Y, Li P, Sedloff JW et al (2015) conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 9:1352–1359CrossRef
30.
go back to reference Wang Y, Tong SW, Xu XF et al (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518CrossRef Wang Y, Tong SW, Xu XF et al (2011) Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv Mater 23:1514–1518CrossRef
31.
go back to reference Yusoff ARBM, Dai L, Cheng H-M, Liu J (2015) Graphene based energy devices. Nanoscale 7:6881–6882 Yusoff ARBM, Dai L, Cheng H-M, Liu J (2015) Graphene based energy devices. Nanoscale 7:6881–6882
32.
go back to reference Zang J, Cao C, Feng Y et al (2014) Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci Rep 4:6492CrossRef Zang J, Cao C, Feng Y et al (2014) Stretchable and high-performance supercapacitors with crumpled graphene papers. Sci Rep 4:6492CrossRef
33.
go back to reference Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
34.
go back to reference Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015CrossRef Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015CrossRef
35.
go back to reference Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907CrossRef Kalaitzidou K, Fukushima H, Askeland P, Drzal LT (2008) The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci 43:2895–2907CrossRef
36.
go back to reference Bao Q, Zhang H, Wang B et al (2011) Broadband graphene polarizer. Nat Photonics 5:411–415CrossRef Bao Q, Zhang H, Wang B et al (2011) Broadband graphene polarizer. Nat Photonics 5:411–415CrossRef
37.
go back to reference Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef
38.
go back to reference Huang PY, Ruiz-Vargas CS, van der Zande AM et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392CrossRef Huang PY, Ruiz-Vargas CS, van der Zande AM et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392CrossRef
39.
go back to reference Kim K, Lee Z, Regan W et al (2011) Grain boundary mapping in polycrystalline graphene. ACS Nano 5:2142–2146CrossRef Kim K, Lee Z, Regan W et al (2011) Grain boundary mapping in polycrystalline graphene. ACS Nano 5:2142–2146CrossRef
40.
go back to reference Liu Z, Suenaga K, Harris PJF, Iijima S (2009) Open and closed edges of graphene layers. Phys Rev Lett 102:015501CrossRef Liu Z, Suenaga K, Harris PJF, Iijima S (2009) Open and closed edges of graphene layers. Phys Rev Lett 102:015501CrossRef
41.
go back to reference Hashimoto A, Suenaga K, Gloter A et al (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873CrossRef Hashimoto A, Suenaga K, Gloter A et al (2004) Direct evidence for atomic defects in graphene layers. Nature 430:870–873CrossRef
42.
go back to reference Meyer JC, Kisielowski C, Erni R et al (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8:3582–3586CrossRef Meyer JC, Kisielowski C, Erni R et al (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8:3582–3586CrossRef
43.
go back to reference Cortijo A, Vozmediano MAH (2007) Electronic properties of curved graphene sheets. Europhys Lett 77:47002CrossRef Cortijo A, Vozmediano MAH (2007) Electronic properties of curved graphene sheets. Europhys Lett 77:47002CrossRef
44.
go back to reference Cortijo A, Vozmediano MAH (2007) Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl Phys B 763:293–308CrossRef Cortijo A, Vozmediano MAH (2007) Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl Phys B 763:293–308CrossRef
45.
go back to reference Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41CrossRef Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41CrossRef
46.
go back to reference Warner JH, Margine ER, Mukai M et al (2012) Dislocation-driven deformations in graphene. Science 337:209–212CrossRef Warner JH, Margine ER, Mukai M et al (2012) Dislocation-driven deformations in graphene. Science 337:209–212CrossRef
47.
go back to reference Bao Q, Zhang H, Yang J et al (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef Bao Q, Zhang H, Yang J et al (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef
48.
go back to reference Hossain MZ, Johns JE, Bevan KH et al (2012) Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat Chem 4:305–309CrossRef Hossain MZ, Johns JE, Bevan KH et al (2012) Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat Chem 4:305–309CrossRef
49.
go back to reference Hossain MZ, Walsh MA, Hersam MC (2010) Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J Am Chem Soc 132:15399–15403CrossRef Hossain MZ, Walsh MA, Hersam MC (2010) Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J Am Chem Soc 132:15399–15403CrossRef
50.
go back to reference Manga KK, Wang S, Jaiswal M et al (2010) High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv Mater 22:5265–5270CrossRef Manga KK, Wang S, Jaiswal M et al (2010) High-gain graphene-titanium oxide photoconductor made from inkjet printable ionic solution. Adv Mater 22:5265–5270CrossRef
51.
go back to reference Mendes RG, Koch B, Bachmatiuk A et al (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B 3:2522–2529CrossRef Mendes RG, Koch B, Bachmatiuk A et al (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B 3:2522–2529CrossRef
52.
go back to reference Yan L, Zheng YB, Zhao F et al (2012) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114CrossRef Yan L, Zheng YB, Zhao F et al (2012) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114CrossRef
53.
go back to reference Johns JE, Hersam MC (2013) Atomic covalent functionalization of graphene. Acc Chem Res 46:77–86CrossRef Johns JE, Hersam MC (2013) Atomic covalent functionalization of graphene. Acc Chem Res 46:77–86CrossRef
54.
go back to reference Mendes RG, Bachmatiuk A, Büchner B et al (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1:401–428CrossRef Mendes RG, Bachmatiuk A, Büchner B et al (2013) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 1:401–428CrossRef
55.
go back to reference Choi Gill B, Park Jung T, Yang Ho M et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4:2910–2918CrossRef Choi Gill B, Park Jung T, Yang Ho M et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4:2910–2918CrossRef
56.
go back to reference Bi H, Yin K, Xie X et al (2013) Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 3:2714CrossRef Bi H, Yin K, Xie X et al (2013) Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 3:2714CrossRef
57.
go back to reference Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980CrossRef Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980CrossRef
58.
go back to reference Wang H, Cui L-F, Yang Y et al (2010) Mn3O4—graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980CrossRef Wang H, Cui L-F, Yang Y et al (2010) Mn3O4—graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980CrossRef
59.
go back to reference Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef
60.
go back to reference Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108CrossRef Dresselhaus MS, Jorio A, Saito R (2010) Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108CrossRef
61.
go back to reference Benedict LX, Crespi VH, Louie SG, Cohen ML (1995) Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys Rev B 52:14935–14940CrossRef Benedict LX, Crespi VH, Louie SG, Cohen ML (1995) Static conductivity and superconductivity of carbon nanotubes: relations between tubes and sheets. Phys Rev B 52:14935–14940CrossRef
62.
go back to reference Kim W, Choi HC, Shim M et al (2002) Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Lett 2:703–708CrossRef Kim W, Choi HC, Shim M et al (2002) Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Lett 2:703–708CrossRef
63.
go back to reference Odom TW, Huang J-L, Kim P, Lieber CM (2000) Structure and electronic properties of carbon nanotubes. J Phys Chem B 104:2794–2809CrossRef Odom TW, Huang J-L, Kim P, Lieber CM (2000) Structure and electronic properties of carbon nanotubes. J Phys Chem B 104:2794–2809CrossRef
64.
go back to reference Popov VN, Lambin P (2006) Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes. Phys Rev B 73:085407CrossRef Popov VN, Lambin P (2006) Radius and chirality dependence of the radial breathing mode and the G-band phonon modes of single-walled carbon nanotubes. Phys Rev B 73:085407CrossRef
65.
go back to reference Sasaki K-I, Saito R, Dresselhaus G et al (2008) Curvature-induced optical phonon frequency shift in metallic carbon nanotubes. Phys Rev B 77:245441CrossRef Sasaki K-I, Saito R, Dresselhaus G et al (2008) Curvature-induced optical phonon frequency shift in metallic carbon nanotubes. Phys Rev B 77:245441CrossRef
66.
go back to reference Jiang J, Saito R, Samsonidze GG et al (2007) Chirality dependence of exciton effects in single-wall carbon nanotubes: tight-binding model. Phys Rev B 75:035407CrossRef Jiang J, Saito R, Samsonidze GG et al (2007) Chirality dependence of exciton effects in single-wall carbon nanotubes: tight-binding model. Phys Rev B 75:035407CrossRef
67.
go back to reference Popov VN (2004) Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New J Phys 6:17CrossRef Popov VN (2004) Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New J Phys 6:17CrossRef
68.
go back to reference Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc A Math Phys Eng Sci 362:2065–2098CrossRef Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc A Math Phys Eng Sci 362:2065–2098CrossRef
69.
go back to reference Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278CrossRef Dresselhaus MS, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278CrossRef
70.
go back to reference Krasheninnikov AV, Banhart F, Li JX et al (2005) Stability of carbon nanotubes under electron irradiation: role of tube diameter and chirality. Phys Rev B 72:125428CrossRef Krasheninnikov AV, Banhart F, Li JX et al (2005) Stability of carbon nanotubes under electron irradiation: role of tube diameter and chirality. Phys Rev B 72:125428CrossRef
71.
go back to reference Sun G, Kürti J, Kertesz M, Baughman RH (2003) Variations of the geometries and band gaps of single-walled carbon nanotubes and the effect of charge injection. J Phys Chem B 107:6924–6931CrossRef Sun G, Kürti J, Kertesz M, Baughman RH (2003) Variations of the geometries and band gaps of single-walled carbon nanotubes and the effect of charge injection. J Phys Chem B 107:6924–6931CrossRef
72.
go back to reference Anantram MP, Léonard F (2006) Physics of carbon nanotube electronic devices. Reports Prog Phys 69:507–561CrossRef Anantram MP, Léonard F (2006) Physics of carbon nanotube electronic devices. Reports Prog Phys 69:507–561CrossRef
73.
go back to reference Blase X, Benedict LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72:1878–1881CrossRef Blase X, Benedict LX, Shirley EL, Louie SG (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett 72:1878–1881CrossRef
74.
go back to reference Stéphan O, Ajayan PM, Colliex C et al (1996) Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry. Phys Rev B 53:13824–13829CrossRef Stéphan O, Ajayan PM, Colliex C et al (1996) Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry. Phys Rev B 53:13824–13829CrossRef
75.
go back to reference Cabria I, Mintmire JW, White CT (2003) Metallic and semiconducting narrow carbon nanotubes. Phys Rev B 67:121406CrossRef Cabria I, Mintmire JW, White CT (2003) Metallic and semiconducting narrow carbon nanotubes. Phys Rev B 67:121406CrossRef
76.
go back to reference Hasan T, Sun Z, Tan P et al (2014) Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano 8:4836–4847CrossRef Hasan T, Sun Z, Tan P et al (2014) Double-wall carbon nanotubes for wide-band, ultrafast pulse generation. ACS Nano 8:4836–4847CrossRef
77.
go back to reference Zhang R, Ning Z, Zhang Y et al (2013) Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat Nanotechnol 8:912–916CrossRef Zhang R, Ning Z, Zhang Y et al (2013) Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat Nanotechnol 8:912–916CrossRef
78.
go back to reference Rümmeli MH, Schäffel F, Bachmatiuk A et al (2010) Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. ACS Nano 4:1146–1152CrossRef Rümmeli MH, Schäffel F, Bachmatiuk A et al (2010) Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. ACS Nano 4:1146–1152CrossRef
79.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
80.
go back to reference Rümmeli MH, Schäffel F, Kramberger C et al (2007) Oxide-driven carbon nanotube growth in supported catalyst CVD. J Am Chem Soc 129:15772–15773CrossRef Rümmeli MH, Schäffel F, Kramberger C et al (2007) Oxide-driven carbon nanotube growth in supported catalyst CVD. J Am Chem Soc 129:15772–15773CrossRef
81.
go back to reference Borowiak-Palen E, Rümmeli MH (2009) Activated Cu catalysts for alcohol CVD synthesized non-magnetic bamboo-like carbon nanotubes and branched bamboo-like carbon nanotubes. Superlattices Microstruct 46:374–378CrossRef Borowiak-Palen E, Rümmeli MH (2009) Activated Cu catalysts for alcohol CVD synthesized non-magnetic bamboo-like carbon nanotubes and branched bamboo-like carbon nanotubes. Superlattices Microstruct 46:374–378CrossRef
82.
go back to reference Lin M, Tan JPY, Boothroyd C et al (2007) Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett 7:2234–2238CrossRef Lin M, Tan JPY, Boothroyd C et al (2007) Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett 7:2234–2238CrossRef
83.
go back to reference Hofmann S, Sharma R, Ducati C et al (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7:602–608CrossRef Hofmann S, Sharma R, Ducati C et al (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7:602–608CrossRef
84.
go back to reference Ouyang M, Huang J-L, Lieber CM (2002) Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res 35:1018–1025CrossRef Ouyang M, Huang J-L, Lieber CM (2002) Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res 35:1018–1025CrossRef
85.
go back to reference Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422CrossRef Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422CrossRef
86.
go back to reference Lieber CM, Odom TW, Huang J-L, Kim P (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64CrossRef Lieber CM, Odom TW, Huang J-L, Kim P (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64CrossRef
87.
go back to reference Sangwan VK, Ortiz RP, Alaboson JMP et al (2012) Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6:7480–7488CrossRef Sangwan VK, Ortiz RP, Alaboson JMP et al (2012) Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6:7480–7488CrossRef
88.
go back to reference Wang H, Luo J, Robertson A et al (2010) High-performance field effect transistors from solution processed carbon nanotubes. ACS Nano 4:6659–6664CrossRef Wang H, Luo J, Robertson A et al (2010) High-performance field effect transistors from solution processed carbon nanotubes. ACS Nano 4:6659–6664CrossRef
89.
go back to reference Rueckes T, Kim K, Joselevich E et al (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef Rueckes T, Kim K, Joselevich E et al (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef
90.
go back to reference Amade R, Vila-Costa M, Hussain S et al (2015) Vertically aligned carbon nanotubes coated with manganese dioxide as cathode material for microbial fuel cells. J Mater Sci 50:1214–1220CrossRef Amade R, Vila-Costa M, Hussain S et al (2015) Vertically aligned carbon nanotubes coated with manganese dioxide as cathode material for microbial fuel cells. J Mater Sci 50:1214–1220CrossRef
91.
go back to reference Abbas SM, Hussain ST, Ali S et al (2013) Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries. J Mater Sci 48:5429–5436CrossRef Abbas SM, Hussain ST, Ali S et al (2013) Structure and electrochemical performance of ZnO/CNT composite as anode material for lithium-ion batteries. J Mater Sci 48:5429–5436CrossRef
92.
go back to reference Deng Q, Wang L, Li J (2015) Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. J Mater Sci 50:4142–4148CrossRef Deng Q, Wang L, Li J (2015) Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. J Mater Sci 50:4142–4148CrossRef
93.
go back to reference Fam DWH, Azoubel S, Liu L et al (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxides. J Mater Sci 50:6578–6585CrossRef Fam DWH, Azoubel S, Liu L et al (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxides. J Mater Sci 50:6578–6585CrossRef
94.
go back to reference Hussain S, Amade R, Jover E, Bertran E (2013) Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. J Mater Sci 48:7620–7628CrossRef Hussain S, Amade R, Jover E, Bertran E (2013) Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. J Mater Sci 48:7620–7628CrossRef
95.
go back to reference Byrappa K, Dayananda AS, Sajan CP et al (2008) Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. J Mater Sci 43:2348–2355CrossRef Byrappa K, Dayananda AS, Sajan CP et al (2008) Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. J Mater Sci 43:2348–2355CrossRef
96.
go back to reference Hu G, Meng X, Feng X et al (2007) Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. J Mater Sci 42:7162–7170CrossRef Hu G, Meng X, Feng X et al (2007) Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. J Mater Sci 42:7162–7170CrossRef
97.
go back to reference Li X, Wei J, Chai Y et al (2015) Different polyaniline/carbon nanotube composites as Pt catalyst supports for methanol electro-oxidation. J Mater Sci 50:1159–1168CrossRef Li X, Wei J, Chai Y et al (2015) Different polyaniline/carbon nanotube composites as Pt catalyst supports for methanol electro-oxidation. J Mater Sci 50:1159–1168CrossRef
98.
go back to reference Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes synthesis, structure, properties, and applications. Springer, Berlin Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes synthesis, structure, properties, and applications. Springer, Berlin
99.
go back to reference Louie SG (2001) Electronic properties, junctions, and defects of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 113–145CrossRef Louie SG (2001) Electronic properties, junctions, and defects of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 113–145CrossRef
100.
go back to reference Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRef Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRef
101.
go back to reference Young PN, Kirkland IA, Briggs Andrew DG et al (2011) Resolving strain in carbon nanotubes at the atomic level. Nat Mater 10:958–962CrossRef Young PN, Kirkland IA, Briggs Andrew DG et al (2011) Resolving strain in carbon nanotubes at the atomic level. Nat Mater 10:958–962CrossRef
102.
go back to reference Dresselhaus MS, Avouris P Introduction to Carbon Materials Research. In: Carbon Nanotub. Springer Berlin Heidelberg, Heidelberg, pp 1–9 Dresselhaus MS, Avouris P Introduction to Carbon Materials Research. In: Carbon Nanotub. Springer Berlin Heidelberg, Heidelberg, pp 1–9
103.
go back to reference Crespi VH, Cohen ML, Rubio A (1997) In situ band gap engineering of carbon nanotubes. Phys Rev Lett 79:2093–2096CrossRef Crespi VH, Cohen ML, Rubio A (1997) In situ band gap engineering of carbon nanotubes. Phys Rev Lett 79:2093–2096CrossRef
104.
go back to reference Odom TW, Hafner JH, Lieber CM (2001) Scanning probe microscopy studies of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 173–211CrossRef Odom TW, Hafner JH, Lieber CM (2001) Scanning probe microscopy studies of carbon nanotubes. Carbon Nanotub. Springer, Berlin, pp 173–211CrossRef
105.
go back to reference Ouyang M, Huang J-L, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes. Science 292:702–705CrossRef Ouyang M, Huang J-L, Cheung CL, Lieber CM (2001) Energy gaps in “metallic” single-walled carbon nanotubes. Science 292:702–705CrossRef
106.
go back to reference Zhou C, Kong J, Dai H (2000) Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys Rev Lett 84:5604–5607CrossRef Zhou C, Kong J, Dai H (2000) Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys Rev Lett 84:5604–5607CrossRef
107.
go back to reference Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581CrossRef Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581CrossRef
108.
go back to reference Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78:1932–1935CrossRef Kane CL, Mele EJ (1997) Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett 78:1932–1935CrossRef
109.
go back to reference Mintmire JW, White CT (1995) Electronic and structural properties of carbon nanotubes. Carbon 33:893–902CrossRef Mintmire JW, White CT (1995) Electronic and structural properties of carbon nanotubes. Carbon 33:893–902CrossRef
110.
go back to reference Ding JW, Yan XH, Cao JX (2002) Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Phys Rev B 66:073401CrossRef Ding JW, Yan XH, Cao JX (2002) Analytical relation of band gaps to both chirality and diameter of single-wall carbon nanotubes. Phys Rev B 66:073401CrossRef
111.
go back to reference Dresselhaus MS, Dresselhaus G, Saito R (1992) C60-related tubules. Solid State Commun 84:201–205CrossRef Dresselhaus MS, Dresselhaus G, Saito R (1992) C60-related tubules. Solid State Commun 84:201–205CrossRef
112.
go back to reference White CT, Robertson DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphitic tubules. Phys Rev B 47:5485–5488CrossRef White CT, Robertson DH, Mintmire JW (1993) Helical and rotational symmetries of nanoscale graphitic tubules. Phys Rev B 47:5485–5488CrossRef
113.
go back to reference Hayashi T, Kim YA, Matoba T et al (2003) Smallest freestanding single-walled carbon nanotube. Nano Lett 3:887–889CrossRef Hayashi T, Kim YA, Matoba T et al (2003) Smallest freestanding single-walled carbon nanotube. Nano Lett 3:887–889CrossRef
114.
go back to reference Weisman RB, Bachilo SM (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett 3:1235–1238CrossRef Weisman RB, Bachilo SM (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett 3:1235–1238CrossRef
115.
go back to reference O’Connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596CrossRef O’Connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596CrossRef
116.
go back to reference Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65CrossRef Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65CrossRef
117.
go back to reference Ebbesen TW, Takada T (1995) Topological and SP3 defect structures in nanotubes. Carbon 33:973–978CrossRef Ebbesen TW, Takada T (1995) Topological and SP3 defect structures in nanotubes. Carbon 33:973–978CrossRef
118.
go back to reference Lambin P, Fonseca A, Vigneron JP et al (1995) Structural and electronic properties of bent carbon nanotubes. Chem Phys Lett 245:85–89CrossRef Lambin P, Fonseca A, Vigneron JP et al (1995) Structural and electronic properties of bent carbon nanotubes. Chem Phys Lett 245:85–89CrossRef
119.
go back to reference Saito R, Dresselhaus G, Dresselhaus MS (1996) Tunneling conductance of connected carbon nanotubes. Phys Rev B 53:2044–2050CrossRef Saito R, Dresselhaus G, Dresselhaus MS (1996) Tunneling conductance of connected carbon nanotubes. Phys Rev B 53:2044–2050CrossRef
120.
121.
go back to reference Charlier J-C, Ebbesen TW, Lambin P (1996) Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B 53:11108–11113CrossRef Charlier J-C, Ebbesen TW, Lambin P (1996) Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B 53:11108–11113CrossRef
122.
go back to reference Chico L, Crespi VH, Benedict LX et al (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76:971–974CrossRef Chico L, Crespi VH, Benedict LX et al (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76:971–974CrossRef
123.
go back to reference Chico L, Benedict LX, Louie SG, Cohen ML (1996) Quantum conductance of carbon nanotubes with defects. Phys Rev B 54:2600–2606CrossRef Chico L, Benedict LX, Louie SG, Cohen ML (1996) Quantum conductance of carbon nanotubes with defects. Phys Rev B 54:2600–2606CrossRef
124.
go back to reference Wang B, Yanfeng M, Li N et al (2010) Facile and scalable fabrication of well-aligned and closely packed single-walled carbon nanotube films on various substrates. Adv Mater 22:3067–3070CrossRef Wang B, Yanfeng M, Li N et al (2010) Facile and scalable fabrication of well-aligned and closely packed single-walled carbon nanotube films on various substrates. Adv Mater 22:3067–3070CrossRef
125.
go back to reference Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef
126.
go back to reference Dufresne A, Paillet M, Putaux JL et al (2002) Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. J Mater Sci 37:3915–3923CrossRef Dufresne A, Paillet M, Putaux JL et al (2002) Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. J Mater Sci 37:3915–3923CrossRef
127.
go back to reference Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535CrossRef Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535CrossRef
128.
go back to reference Suhr J, Koratkar NA (2008) Energy dissipation in carbon nanotube composites: a review. J Mater Sci 43:4370–4382CrossRef Suhr J, Koratkar NA (2008) Energy dissipation in carbon nanotube composites: a review. J Mater Sci 43:4370–4382CrossRef
129.
go back to reference Bozovic D, Bockrath M, Hafner JH et al (2003) Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys Rev B 67:033407CrossRef Bozovic D, Bockrath M, Hafner JH et al (2003) Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys Rev B 67:033407CrossRef
130.
go back to reference Dieringa H (2011) Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46:289–306CrossRef Dieringa H (2011) Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46:289–306CrossRef
131.
go back to reference Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951CrossRef Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44:1934–1951CrossRef
132.
go back to reference Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37CrossRef Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37CrossRef
133.
go back to reference Chen L, Chin LC, Ashby PD, Lieber CM (2004) Single-walled carbon nanotube AFM probes: optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Lett 4:1725–1731CrossRef Chen L, Chin LC, Ashby PD, Lieber CM (2004) Single-walled carbon nanotube AFM probes: optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Lett 4:1725–1731CrossRef
134.
135.
go back to reference Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502CrossRef Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502CrossRef
136.
go back to reference Yao Z, Wang J-S, Li B, Liu G-R (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Phys Rev B 71:085417CrossRef Yao Z, Wang J-S, Li B, Liu G-R (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Phys Rev B 71:085417CrossRef
137.
go back to reference Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B Condens Matter 323:1–5CrossRef Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B Condens Matter 323:1–5CrossRef
138.
go back to reference Bajpai A, Gorantla S, Löffler M et al (2012) The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon 50:1706–1709CrossRef Bajpai A, Gorantla S, Löffler M et al (2012) The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon 50:1706–1709CrossRef
139.
go back to reference Cichocka MO, Zhao J, Bachmatiuk A et al (2014) In situ observations of Pt nanoparticles coalescing inside carbon nanotubes. RSC Adv 4:49442–49445CrossRef Cichocka MO, Zhao J, Bachmatiuk A et al (2014) In situ observations of Pt nanoparticles coalescing inside carbon nanotubes. RSC Adv 4:49442–49445CrossRef
140.
go back to reference Gorantla S, Börrnert F, Bachmatiuk A et al (2010) In situ observations of fullerene fusion and ejection in carbon nanotubes. Nanoscale 2:2077CrossRef Gorantla S, Börrnert F, Bachmatiuk A et al (2010) In situ observations of fullerene fusion and ejection in carbon nanotubes. Nanoscale 2:2077CrossRef
141.
go back to reference Pohl D, Schäffel F, Rümmeli MH et al (2011) Understanding the metal-carbon interface in FePt catalyzed carbon nanotubes. Phys Rev Lett 107:185501CrossRef Pohl D, Schäffel F, Rümmeli MH et al (2011) Understanding the metal-carbon interface in FePt catalyzed carbon nanotubes. Phys Rev Lett 107:185501CrossRef
142.
go back to reference Dillon AC, Jones KM, Bekkedahl TA et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef Dillon AC, Jones KM, Bekkedahl TA et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379CrossRef
143.
go back to reference Liu C, Chen Y, Wu C-Z et al (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef Liu C, Chen Y, Wu C-Z et al (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455CrossRef
144.
go back to reference Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRef Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRef
145.
go back to reference Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:577CrossRef Wang Q, Johnson JK (1999) Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys 110:577CrossRef
146.
go back to reference Byl O, Kondratyuk P, Yates JT (2003) Adsorption and dimerization of NO inside single-walled carbon nanotubes an infrared spectroscopic study. J Phys Chem B 107:4277–4279CrossRef Byl O, Kondratyuk P, Yates JT (2003) Adsorption and dimerization of NO inside single-walled carbon nanotubes an infrared spectroscopic study. J Phys Chem B 107:4277–4279CrossRef
147.
go back to reference Fujiwara A, Ishii K, Suematsu H et al (2001) Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem Phys Lett 336:205–211CrossRef Fujiwara A, Ishii K, Suematsu H et al (2001) Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem Phys Lett 336:205–211CrossRef
148.
go back to reference Kuznetsova A, Yates JT, Liu J, Smalley RE (2000) Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase. J Chem Phys 112:9590CrossRef Kuznetsova A, Yates JT, Liu J, Smalley RE (2000) Physical adsorption of xenon in open single walled carbon nanotubes: observation of a quasi-one-dimensional confined Xe phase. J Chem Phys 112:9590CrossRef
149.
go back to reference Shiomi J, Maruyama S (2009) Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20:055708CrossRef Shiomi J, Maruyama S (2009) Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20:055708CrossRef
150.
go back to reference Noy A, Park HG, Fornasiero F et al (2007) Nanofluidics in carbon nanotubes. Nano Today 2:22–29CrossRef Noy A, Park HG, Fornasiero F et al (2007) Nanofluidics in carbon nanotubes. Nano Today 2:22–29CrossRef
151.
go back to reference Maniwa Y, Matsuda K, Kyakuno H et al (2007) Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat Mater 6:135–141CrossRef Maniwa Y, Matsuda K, Kyakuno H et al (2007) Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat Mater 6:135–141CrossRef
152.
go back to reference Zhao Y, Song L, Deng K et al (2008) Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv Mater 20:1772–1776CrossRef Zhao Y, Song L, Deng K et al (2008) Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv Mater 20:1772–1776CrossRef
153.
go back to reference Maniwa Y, Kataura H, Abe M et al (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401:534–538CrossRef Maniwa Y, Kataura H, Abe M et al (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401:534–538CrossRef
154.
go back to reference Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–805CrossRef Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–805CrossRef
155.
go back to reference Pan X, Fan Z, Chen W et al (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511CrossRef Pan X, Fan Z, Chen W et al (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511CrossRef
156.
go back to reference Tessonnier J-P, Pesant L, Ehret G et al (2005) Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Appl Catal A Gen 288:203–210CrossRef Tessonnier J-P, Pesant L, Ehret G et al (2005) Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde. Appl Catal A Gen 288:203–210CrossRef
157.
go back to reference Yoshitake T, Shimakawa Y, Kuroshima S et al (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Phys B Condens Matter 323:124–126CrossRef Yoshitake T, Shimakawa Y, Kuroshima S et al (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Phys B Condens Matter 323:124–126CrossRef
158.
go back to reference Shiozawa H, Pichler T, Grüneis A et al (2008) A catalytic reaction inside a single-walled carbon nanotube. Adv Mater 20:1443–1449CrossRef Shiozawa H, Pichler T, Grüneis A et al (2008) A catalytic reaction inside a single-walled carbon nanotube. Adv Mater 20:1443–1449CrossRef
159.
go back to reference Pan X, Bao X (2011) The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 44:553–562CrossRef Pan X, Bao X (2011) The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res 44:553–562CrossRef
160.
go back to reference Chen W, Fan Z, Gu L et al (2010) Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem Commun 46:3905CrossRef Chen W, Fan Z, Gu L et al (2010) Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem Commun 46:3905CrossRef
161.
go back to reference Yang C-K, Zhao J, Lu JP (2003) Magnetism of transition-metal/carbon-nanotube hybrid structures. Phys Rev Lett 90:257203CrossRef Yang C-K, Zhao J, Lu JP (2003) Magnetism of transition-metal/carbon-nanotube hybrid structures. Phys Rev Lett 90:257203CrossRef
162.
go back to reference Hirahara K, Suenaga K, Bandow S et al (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387CrossRef Hirahara K, Suenaga K, Bandow S et al (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387CrossRef
163.
go back to reference Gao H, Kong Y, Cui D, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473CrossRef Gao H, Kong Y, Cui D, Ozkan CS (2003) Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett 3:471–473CrossRef
164.
go back to reference Liu Z, Yanagi K, Suenaga K et al (2007) Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat Nanotechnol 2:422–425CrossRef Liu Z, Yanagi K, Suenaga K et al (2007) Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat Nanotechnol 2:422–425CrossRef
165.
go back to reference Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386CrossRef Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386CrossRef
166.
go back to reference Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839CrossRef Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839CrossRef
167.
go back to reference Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989CrossRef Chen RJ, Bangsaruntip S, Drouvalakis KA et al (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989CrossRef
168.
go back to reference Lieber CM, Wong SS, Joselevich E et al (1998) Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394:52–55CrossRef Lieber CM, Wong SS, Joselevich E et al (1998) Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394:52–55CrossRef
169.
go back to reference Hain TC, Kröker K, Stich DG, Hertel T (2012) Influence of DNA conformation on the dispersion of SWNTs: single-strand DNA versus hairpin DNA. Soft Matter 8:2820CrossRef Hain TC, Kröker K, Stich DG, Hertel T (2012) Influence of DNA conformation on the dispersion of SWNTs: single-strand DNA versus hairpin DNA. Soft Matter 8:2820CrossRef
170.
go back to reference Sun H, She P, Lu G et al (2014) Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci 49:6845–6854CrossRef Sun H, She P, Lu G et al (2014) Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci 49:6845–6854CrossRef
171.
go back to reference Ayala P, Plank W, Grüneis A et al (2008) A one step approach to B-doped single-walled carbon nanotubes. J Mater Chem 18:5676–5681CrossRef Ayala P, Plank W, Grüneis A et al (2008) A one step approach to B-doped single-walled carbon nanotubes. J Mater Chem 18:5676–5681CrossRef
172.
go back to reference Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef Gong K, Du F, Xia Z et al (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRef
173.
go back to reference Yu D, Zhang Q, Dai L (2010) Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J Am Chem Soc 132:15127–15129CrossRef Yu D, Zhang Q, Dai L (2010) Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J Am Chem Soc 132:15127–15129CrossRef
174.
go back to reference Chopra NG, Luyken RJ, Cherrey K et al (1995) Boron nitride nanotubes. Science 269:966–967CrossRef Chopra NG, Luyken RJ, Cherrey K et al (1995) Boron nitride nanotubes. Science 269:966–967CrossRef
175.
go back to reference Gonzalez-Martinez IG, Gorantla SM, Bachmatiuk A et al (2014) Room temperature in situ growth of B/BOx nanowires and BOx nanotubes. Nano Lett 14:799–805CrossRef Gonzalez-Martinez IG, Gorantla SM, Bachmatiuk A et al (2014) Room temperature in situ growth of B/BOx nanowires and BOx nanotubes. Nano Lett 14:799–805CrossRef
176.
go back to reference Lourie OR, Jones CR, Bartlett BM et al (2000) CVD growth of boron nitride nanotubes. Chem Mater 12:1808–1810CrossRef Lourie OR, Jones CR, Bartlett BM et al (2000) CVD growth of boron nitride nanotubes. Chem Mater 12:1808–1810CrossRef
177.
go back to reference Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
178.
go back to reference Makharza S, Cirillo G, Bachmatiuk A et al (2013) Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. J Nanoparticle Res 15:2099CrossRef Makharza S, Cirillo G, Bachmatiuk A et al (2013) Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. J Nanoparticle Res 15:2099CrossRef
179.
go back to reference Stankovich S, Dikin AD, Piner DR et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin AD, Piner DR et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
180.
go back to reference Tamboli SH, Kim BS, Choi G et al (2014) Post-heating effects on the physical and electrochemical capacitive properties of reduced graphene oxide paper. J Mater Chem A 2:5077CrossRef Tamboli SH, Kim BS, Choi G et al (2014) Post-heating effects on the physical and electrochemical capacitive properties of reduced graphene oxide paper. J Mater Chem A 2:5077CrossRef
181.
go back to reference Liang YT, Hersam MC (2010) Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. J Am Chem Soc 132:17661–17663CrossRef Liang YT, Hersam MC (2010) Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. J Am Chem Soc 132:17661–17663CrossRef
182.
go back to reference Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891CrossRef Wang J, Manga KK, Bao Q, Loh KP (2011) High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc 133:8888–8891CrossRef
183.
go back to reference Jiao L, Zhang L, Ding L et al (2010) Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res 3:387–394CrossRef Jiao L, Zhang L, Ding L et al (2010) Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res 3:387–394CrossRef
184.
go back to reference Li X, Wang X, Zhang L et al (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef Li X, Wang X, Zhang L et al (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef
185.
go back to reference Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRef Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRef
186.
go back to reference Emtsev KV, Speck F, Seyller T et al (2008) Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys Rev B 77:155303CrossRef Emtsev KV, Speck F, Seyller T et al (2008) Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys Rev B 77:155303CrossRef
187.
go back to reference Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRef Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRef
188.
go back to reference Dai B, Fu L, Zou Z et al (2011) Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat Commun 2:522CrossRef Dai B, Fu L, Zou Z et al (2011) Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat Commun 2:522CrossRef
189.
go back to reference Liu X, Fu L, Liu N et al (2011) Segregation growth of graphene on Cu-Ni alloy for precise layer control. J Phys Chem C 115:11976–11982CrossRef Liu X, Fu L, Liu N et al (2011) Segregation growth of graphene on Cu-Ni alloy for precise layer control. J Phys Chem C 115:11976–11982CrossRef
190.
go back to reference Rümmeli MH, Zeng M, Melkhanova S et al (2013) Insights into the early growth of homogeneous single-layer graphene over Ni-Mo binary substrates. Chem Mater 25:3880–3887CrossRef Rümmeli MH, Zeng M, Melkhanova S et al (2013) Insights into the early growth of homogeneous single-layer graphene over Ni-Mo binary substrates. Chem Mater 25:3880–3887CrossRef
191.
go back to reference Zou Z, Fu L, Song X et al (2014) Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene. Nano Lett 14:3832–3839CrossRef Zou Z, Fu L, Song X et al (2014) Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene. Nano Lett 14:3832–3839CrossRef
192.
go back to reference Pang J, Bachmatiuk A, Fu L et al (2015) Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv 5:60884–60891CrossRef Pang J, Bachmatiuk A, Fu L et al (2015) Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Adv 5:60884–60891CrossRef
193.
go back to reference Mendes RG, Bachmatiuk A, El-Gendy AA et al (2012) A Facile route to coat iron oxide nanoparticles with few-layer graphene. J Phys Chem C 116:23749–23756CrossRef Mendes RG, Bachmatiuk A, El-Gendy AA et al (2012) A Facile route to coat iron oxide nanoparticles with few-layer graphene. J Phys Chem C 116:23749–23756CrossRef
194.
go back to reference Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef
195.
go back to reference Pang J, Bachmatiuk A, Fu L et al (2015) Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J Phys Chem C 119:13363–13368CrossRef Pang J, Bachmatiuk A, Fu L et al (2015) Oxidation as a means to remove surface contaminants on Cu foil prior to graphene growth by chemical vapor deposition. J Phys Chem C 119:13363–13368CrossRef
196.
go back to reference Rümmeli MH, Gorantla S, Bachmatiuk A et al (2013) On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem Mater 25:4861–4866CrossRef Rümmeli MH, Gorantla S, Bachmatiuk A et al (2013) On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem Mater 25:4861–4866CrossRef
197.
go back to reference Riikonen J, Kim W, Li C et al (2013) Photo-thermal chemical vapor deposition of graphene on copper. Carbon 62:43–50CrossRef Riikonen J, Kim W, Li C et al (2013) Photo-thermal chemical vapor deposition of graphene on copper. Carbon 62:43–50CrossRef
198.
go back to reference Kim SM, Hsu A, Lee Y et al (2013) The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24:365602CrossRef Kim SM, Hsu A, Lee Y et al (2013) The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24:365602CrossRef
199.
go back to reference Hao Y, Bharathi MS, Wang L et al (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723CrossRef Hao Y, Bharathi MS, Wang L et al (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723CrossRef
200.
go back to reference Luo Z, Lu Y, Singer DW et al (2011) Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater 23:1441–1447CrossRef Luo Z, Lu Y, Singer DW et al (2011) Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater 23:1441–1447CrossRef
201.
go back to reference Procházka P, Mach J, Bischoff D et al (2014) Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition. Nanotechnology 25:185601CrossRef Procházka P, Mach J, Bischoff D et al (2014) Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition. Nanotechnology 25:185601CrossRef
202.
go back to reference Eres G, Regmi M, Rouleau CM et al (2014) Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition. ACS Nano 8:5657–5669CrossRef Eres G, Regmi M, Rouleau CM et al (2014) Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition. ACS Nano 8:5657–5669CrossRef
203.
go back to reference Tan L, Zeng M, Zhang T, Fu L (2015) Design of catalytic substrates for uniform graphene films: from solid-metal to liquid-metal. Nanoscale 7:9105–9121CrossRef Tan L, Zeng M, Zhang T, Fu L (2015) Design of catalytic substrates for uniform graphene films: from solid-metal to liquid-metal. Nanoscale 7:9105–9121CrossRef
204.
go back to reference Zeng M, Tan L, Wang J et al (2014) Liquid metal: an innovative solution to uniform graphene films. Chem Mater 26:3637–3643CrossRef Zeng M, Tan L, Wang J et al (2014) Liquid metal: an innovative solution to uniform graphene films. Chem Mater 26:3637–3643CrossRef
205.
go back to reference Magnuson CW, Kong X, Ji H et al (2014) Copper oxide as a “self-cleaning” substrate for graphene growth. J Mater Res 29:403–409CrossRef Magnuson CW, Kong X, Ji H et al (2014) Copper oxide as a “self-cleaning” substrate for graphene growth. J Mater Res 29:403–409CrossRef
206.
go back to reference Vlassiouk I, Regmi M, Fulvio P et al (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069–6076CrossRef Vlassiouk I, Regmi M, Fulvio P et al (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069–6076CrossRef
207.
go back to reference Han GH, Güneş F, Bae JJ et al (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144–4148CrossRef Han GH, Güneş F, Bae JJ et al (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144–4148CrossRef
208.
go back to reference Kim KSKS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef Kim KSKS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef
209.
go back to reference Tan L, Zeng M, Wu Q et al (2015) Direct growth of ultrafast transparent single-layer graphene defoggers. Small 11:1840–1846CrossRef Tan L, Zeng M, Wu Q et al (2015) Direct growth of ultrafast transparent single-layer graphene defoggers. Small 11:1840–1846CrossRef
210.
go back to reference Chen J, Wen Y, Guo Y et al (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc 133:17548–17551CrossRef Chen J, Wen Y, Guo Y et al (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc 133:17548–17551CrossRef
211.
go back to reference Sutter P, Hybertsen MS, Sadowski JT, Sutter E (2009) Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett 9:2654–2660CrossRef Sutter P, Hybertsen MS, Sadowski JT, Sutter E (2009) Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett 9:2654–2660CrossRef
212.
go back to reference Ramón ME, Gupta A, Corbet C et al (2011) CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5:7198–7204CrossRef Ramón ME, Gupta A, Corbet C et al (2011) CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5:7198–7204CrossRef
213.
go back to reference An H, Lee W-J, Jung J (2011) Graphene synthesis on Fe foil using thermal CVD. Curr Appl Phys 11:S81–S85CrossRef An H, Lee W-J, Jung J (2011) Graphene synthesis on Fe foil using thermal CVD. Curr Appl Phys 11:S81–S85CrossRef
214.
go back to reference John R, Ashokreddy A, Vijayan C, Pradeep T (2011) Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition. Nanotechnology 22:165701CrossRef John R, Ashokreddy A, Vijayan C, Pradeep T (2011) Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition. Nanotechnology 22:165701CrossRef
215.
go back to reference Kiraly B, Iski EV, Mannix AJ et al (2013) Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat Commun 4:2804CrossRef Kiraly B, Iski EV, Mannix AJ et al (2013) Solid-source growth and atomic-scale characterization of graphene on Ag(111). Nat Commun 4:2804CrossRef
216.
go back to reference Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef
217.
go back to reference Reina A, Thiele S, Jia X et al (2009) Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2:509–516CrossRef Reina A, Thiele S, Jia X et al (2009) Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2:509–516CrossRef
218.
go back to reference Li X, Cai W, Colombo L et al (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272CrossRef Li X, Cai W, Colombo L et al (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268–4272CrossRef
219.
go back to reference Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef
220.
go back to reference Tao L, Lee J, Chou H et al (2012) Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. ACS Nano 6:2319–2325CrossRef Tao L, Lee J, Chou H et al (2012) Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. ACS Nano 6:2319–2325CrossRef
221.
go back to reference Ismach A, Druzgalski C, Penwell S et al (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548CrossRef Ismach A, Druzgalski C, Penwell S et al (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548CrossRef
222.
go back to reference Chen J, Guo Y, Jiang L et al (2014) Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv Mater 26:1348–1353CrossRef Chen J, Guo Y, Jiang L et al (2014) Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv Mater 26:1348–1353CrossRef
223.
go back to reference Hwang J, Kim M, Campbell D et al (2013) Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7:385–395CrossRef Hwang J, Kim M, Campbell D et al (2013) Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7:385–395CrossRef
224.
go back to reference Chen J, Guo Y, Wen Y et al (2013) Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv Mater 25:992–997CrossRef Chen J, Guo Y, Wen Y et al (2013) Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv Mater 25:992–997CrossRef
225.
go back to reference Rümmeli MH, Bachmatiuk A, Scott A et al (2010) Direct low-temperature nanographene cvd synthesis over a dielectric insulator. ACS Nano 4:4206–4210CrossRef Rümmeli MH, Bachmatiuk A, Scott A et al (2010) Direct low-temperature nanographene cvd synthesis over a dielectric insulator. ACS Nano 4:4206–4210CrossRef
226.
go back to reference Ding X, Ding G, Xie X et al (2011) Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49:2522–2525CrossRef Ding X, Ding G, Xie X et al (2011) Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49:2522–2525CrossRef
227.
go back to reference Garcia JM, Wurstbauer U, Levy A et al (2012) Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun 152:975–978CrossRef Garcia JM, Wurstbauer U, Levy A et al (2012) Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun 152:975–978CrossRef
228.
go back to reference Tang S, Ding G, Xie X et al (2012) Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon 50:329–331CrossRef Tang S, Ding G, Xie X et al (2012) Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon 50:329–331CrossRef
229.
go back to reference Chugh S, Mehta R, Lu N et al (2015) Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD. Carbon 93:393–399CrossRef Chugh S, Mehta R, Lu N et al (2015) Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD. Carbon 93:393–399CrossRef
230.
go back to reference Kato T, Hatakeyama R (2012) Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD. ACS Nano 6:8508–8515CrossRef Kato T, Hatakeyama R (2012) Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD. ACS Nano 6:8508–8515CrossRef
231.
go back to reference Li X, Magnuson CW, Venugopal A et al (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819CrossRef Li X, Magnuson CW, Venugopal A et al (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819CrossRef
232.
go back to reference Li X, Magnuson CW, Venugopal A et al (2010) Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett 10:4328–4334CrossRef Li X, Magnuson CW, Venugopal A et al (2010) Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett 10:4328–4334CrossRef
233.
go back to reference Mehdipour H, Ostrikov K (2012) Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure. ACS Nano 6:10276–10286CrossRef Mehdipour H, Ostrikov K (2012) Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure. ACS Nano 6:10276–10286CrossRef
234.
go back to reference Radhakrishnan G, Adams PM, Stapleton AD et al (2011) Large single-crystal monolayer graphene by decomposition of methanol. Appl Phys A 105:31–37CrossRef Radhakrishnan G, Adams PM, Stapleton AD et al (2011) Large single-crystal monolayer graphene by decomposition of methanol. Appl Phys A 105:31–37CrossRef
235.
go back to reference Gadipelli S, Calizo I, Ford J et al (2011) A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol. J Mater Chem 21:16057CrossRef Gadipelli S, Calizo I, Ford J et al (2011) A highly practical route for large-area, single layer graphene from liquid carbon sources such as benzene and methanol. J Mater Chem 21:16057CrossRef
236.
go back to reference Paul RK, Badhulika S, Niyogi S et al (2011) The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition. Carbon 49:3789–3795CrossRef Paul RK, Badhulika S, Niyogi S et al (2011) The production of oxygenated polycrystalline graphene by one-step ethanol-chemical vapor deposition. Carbon 49:3789–3795CrossRef
237.
go back to reference Zhao P, Hou B, Chen X et al (2013) Investigation of non-segregation graphene growth on Ni via isotope-labeled alcohol catalytic chemical vapor deposition. Nanoscale 5:6530CrossRef Zhao P, Hou B, Chen X et al (2013) Investigation of non-segregation graphene growth on Ni via isotope-labeled alcohol catalytic chemical vapor deposition. Nanoscale 5:6530CrossRef
238.
go back to reference Guermoune A, Chari T, Popescu F et al (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49:4204–4210CrossRef Guermoune A, Chari T, Popescu F et al (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49:4204–4210CrossRef
239.
go back to reference Myint M, Yan Y, Chen JG (2014) Reaction pathways of propanal and 1-propanol on Fe/Ni(111) and Cu/Ni(111) bimetallic surfaces. J Phys Chem C 118:11340–11349CrossRef Myint M, Yan Y, Chen JG (2014) Reaction pathways of propanal and 1-propanol on Fe/Ni(111) and Cu/Ni(111) bimetallic surfaces. J Phys Chem C 118:11340–11349CrossRef
240.
go back to reference Lisi N, Buonocore F, Dikonimos T et al (2014) Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol. Thin Solid Films 571:139–144CrossRef Lisi N, Buonocore F, Dikonimos T et al (2014) Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol. Thin Solid Films 571:139–144CrossRef
241.
go back to reference Dong X, Wang P, Fang W et al (2011) Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49:3672–3678CrossRef Dong X, Wang P, Fang W et al (2011) Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49:3672–3678CrossRef
242.
go back to reference Gao H, Liu Z, Song L et al (2012) Synthesis of S-doped graphene by liquid precursor. Nanotechnology 23:275605CrossRef Gao H, Liu Z, Song L et al (2012) Synthesis of S-doped graphene by liquid precursor. Nanotechnology 23:275605CrossRef
243.
go back to reference Gullapalli H, Mohana Reddy AL, Kilpatrick S et al (2011) Graphene growth via carburization of stainless steel and application in energy storage. Small 7:1697–1700CrossRef Gullapalli H, Mohana Reddy AL, Kilpatrick S et al (2011) Graphene growth via carburization of stainless steel and application in energy storage. Small 7:1697–1700CrossRef
244.
go back to reference Gan X, Zhou H, Zhu B et al (2012) A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenzene on Cu foils. Carbon 50:306–310CrossRef Gan X, Zhou H, Zhu B et al (2012) A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenzene on Cu foils. Carbon 50:306–310CrossRef
245.
go back to reference Dai G-P, Cooke PH, Deng S (2012) Direct growth of graphene films on TEM nickel grids using benzene as precursor. Chem Phys Lett 531:193–196CrossRef Dai G-P, Cooke PH, Deng S (2012) Direct growth of graphene films on TEM nickel grids using benzene as precursor. Chem Phys Lett 531:193–196CrossRef
246.
go back to reference Wan X, Chen K, Liu D et al (2012) High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chem Mater 24:3906–3915CrossRef Wan X, Chen K, Liu D et al (2012) High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chem Mater 24:3906–3915CrossRef
247.
go back to reference Kang D, Kim W-J, Lim JA, Song Y-W (2012) Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source. ACS Appl Mater Interfaces 4:3663–3666CrossRef Kang D, Kim W-J, Lim JA, Song Y-W (2012) Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source. ACS Appl Mater Interfaces 4:3663–3666CrossRef
248.
go back to reference Lee JS, Jang CW, Kim JM et al (2014) Graphene synthesis by C implantation into Cu foils. Carbon 66:267–271CrossRef Lee JS, Jang CW, Kim JM et al (2014) Graphene synthesis by C implantation into Cu foils. Carbon 66:267–271CrossRef
249.
go back to reference Hackley J, Ali D, DiPasquale J et al (2009) Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl Phys Lett 95:133114CrossRef Hackley J, Ali D, DiPasquale J et al (2009) Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl Phys Lett 95:133114CrossRef
250.
go back to reference Ji H, Hao Y, Ren Y et al (2011) Graphene growth using a solid carbon feedstock and hydrogen. ACS Nano 5:7656–7661CrossRef Ji H, Hao Y, Ren Y et al (2011) Graphene growth using a solid carbon feedstock and hydrogen. ACS Nano 5:7656–7661CrossRef
251.
go back to reference Weatherup RS, Baehtz C, Dlubak B et al (2013) Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources. Nano Lett 13:4624–4631CrossRef Weatherup RS, Baehtz C, Dlubak B et al (2013) Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources. Nano Lett 13:4624–4631CrossRef
252.
go back to reference Shin H-J, Choi WM, Yoon S-M et al (2011) Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv Mater 23:4392–4397CrossRef Shin H-J, Choi WM, Yoon S-M et al (2011) Transfer-free growth of few-layer graphene by self-assembled monolayers. Adv Mater 23:4392–4397CrossRef
253.
go back to reference Kalita G, Sharma S, Wakita K et al (2012) Synthesis of graphene by surface wave plasma chemical vapor deposition from camphor. Phys Status Solidi 209:2510–2513CrossRef Kalita G, Sharma S, Wakita K et al (2012) Synthesis of graphene by surface wave plasma chemical vapor deposition from camphor. Phys Status Solidi 209:2510–2513CrossRef
254.
go back to reference Kalita G, Wakita K, Umeno M (2011) Monolayer graphene from a green solid precursor. Phys E Low-dimensional Syst Nanostructures 43:1490–1493CrossRef Kalita G, Wakita K, Umeno M (2011) Monolayer graphene from a green solid precursor. Phys E Low-dimensional Syst Nanostructures 43:1490–1493CrossRef
255.
go back to reference Sharma S, Kalita G, Ayhan ME et al (2013) Synthesis of hexagonal graphene on polycrystalline Cu foil from solid camphor by atmospheric pressure chemical vapor deposition. J Mater Sci 48:7036–7041CrossRef Sharma S, Kalita G, Ayhan ME et al (2013) Synthesis of hexagonal graphene on polycrystalline Cu foil from solid camphor by atmospheric pressure chemical vapor deposition. J Mater Sci 48:7036–7041CrossRef
256.
go back to reference Sharma S, Kalita G, Hirano R et al (2013) Influence of gas composition on the formation of graphene domain synthesized from camphor. Mater Lett 93:258–262CrossRef Sharma S, Kalita G, Hirano R et al (2013) Influence of gas composition on the formation of graphene domain synthesized from camphor. Mater Lett 93:258–262CrossRef
257.
go back to reference Sokolov AN, Yap FL, Liu N et al (2013) Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nat Commun 4:2402CrossRef Sokolov AN, Yap FL, Liu N et al (2013) Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nat Commun 4:2402CrossRef
258.
go back to reference Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607CrossRef Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607CrossRef
259.
go back to reference Ray AK, Sahu RK, Rajinikanth V et al (2012) Preparation and characterization of graphene and Ni-decorated graphene using flower petals as the precursor material. Carbon 50:4123–4129CrossRef Ray AK, Sahu RK, Rajinikanth V et al (2012) Preparation and characterization of graphene and Ni-decorated graphene using flower petals as the precursor material. Carbon 50:4123–4129CrossRef
260.
go back to reference Hong N, Yang W, Bao C et al (2012) Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones. Mater Res Bull 47:4082–4088CrossRef Hong N, Yang W, Bao C et al (2012) Facile synthesis of graphene by pyrolysis of poly(methyl methacrylate) on nickel particles in the confined microzones. Mater Res Bull 47:4082–4088CrossRef
261.
go back to reference Kwak J, Kwon T-Y, Chu JH et al (2013) In situ observations of gas phase dynamics during graphene growth using solid-state carbon sources. Phys Chem Chem Phys 15:10446CrossRef Kwak J, Kwon T-Y, Chu JH et al (2013) In situ observations of gas phase dynamics during graphene growth using solid-state carbon sources. Phys Chem Chem Phys 15:10446CrossRef
262.
go back to reference Lee S, Hong J, Koo JH et al (2013) Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source. ACS Appl Mater Interfaces 5:2432–2437CrossRef Lee S, Hong J, Koo JH et al (2013) Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source. ACS Appl Mater Interfaces 5:2432–2437CrossRef
263.
go back to reference Li Z, Wu P, Wang C et al (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390CrossRef Li Z, Wu P, Wang C et al (2011) Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano 5:3385–3390CrossRef
264.
go back to reference Lin T, Wang Y, Bi H et al (2012) Hydrogen flame synthesis of few-layer graphene from a solid carbon source on hexagonal boron nitride. J Mater Chem 22:2859CrossRef Lin T, Wang Y, Bi H et al (2012) Hydrogen flame synthesis of few-layer graphene from a solid carbon source on hexagonal boron nitride. J Mater Chem 22:2859CrossRef
265.
go back to reference Sun Z, Yan Z, Yao J et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552CrossRef Sun Z, Yan Z, Yao J et al (2010) Growth of graphene from solid carbon sources. Nature 468:549–552CrossRef
266.
go back to reference Tiwari RN, Ishihara M, Tiwari JN, Yoshimura M (2012) Transformation of polymer to graphene films at partially low temperature. Polym Chem 3:2712CrossRef Tiwari RN, Ishihara M, Tiwari JN, Yoshimura M (2012) Transformation of polymer to graphene films at partially low temperature. Polym Chem 3:2712CrossRef
267.
go back to reference Suzuki S, Takei Y, Furukawa K, Hibino H (2011) Graphene growth from a spin-coated polymer without a reactive gas. Appl Phys Express 4:065102CrossRef Suzuki S, Takei Y, Furukawa K, Hibino H (2011) Graphene growth from a spin-coated polymer without a reactive gas. Appl Phys Express 4:065102CrossRef
268.
go back to reference Sharma S, Kalita G, Hirano R et al (2014) Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72:66–73CrossRef Sharma S, Kalita G, Hirano R et al (2014) Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon 72:66–73CrossRef
269.
go back to reference Huang L, Wind SJ, O’Brien SP (2003) Controlled growth of single-walled carbon nanotubes from an ordered mesoporous silica template. Nano Lett 3:299–303CrossRef Huang L, Wind SJ, O’Brien SP (2003) Controlled growth of single-walled carbon nanotubes from an ordered mesoporous silica template. Nano Lett 3:299–303CrossRef
270.
go back to reference Homma Y, Kobayashi Y, Ogino T et al (2003) Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J Phys Chem B 107:12161–12164CrossRef Homma Y, Kobayashi Y, Ogino T et al (2003) Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J Phys Chem B 107:12161–12164CrossRef
271.
go back to reference Lin JH, Chen CS, Rümmeli MH et al (2011) Growth of carbon nanotubes catalyzed by defect-rich graphite surfaces. Chem Mater 23:1637–1639CrossRef Lin JH, Chen CS, Rümmeli MH et al (2011) Growth of carbon nanotubes catalyzed by defect-rich graphite surfaces. Chem Mater 23:1637–1639CrossRef
272.
go back to reference Lin J-H, Chen C-S, Ma H-L et al (2008) Self-assembling of multi-walled carbon nanotubes on a porous carbon surface by catalyst-free chemical vapor deposition. Carbon 46:1619–1623CrossRef Lin J-H, Chen C-S, Ma H-L et al (2008) Self-assembling of multi-walled carbon nanotubes on a porous carbon surface by catalyst-free chemical vapor deposition. Carbon 46:1619–1623CrossRef
273.
go back to reference Qian W, Liu T, Wei F et al (2003) The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon 41:2613–2617CrossRef Qian W, Liu T, Wei F et al (2003) The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon 41:2613–2617CrossRef
274.
go back to reference Zhang X, Zhang J, Wang R, Liu Z (2004) Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon 42:1455–1461CrossRef Zhang X, Zhang J, Wang R, Liu Z (2004) Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon 42:1455–1461CrossRef
275.
go back to reference Zheng F, Liang Gao Y et al (2002) Carbon nanotube synthesis using mesoporous silica templates. Nano Lett 2:729–732CrossRef Zheng F, Liang Gao Y et al (2002) Carbon nanotube synthesis using mesoporous silica templates. Nano Lett 2:729–732CrossRef
276.
go back to reference Couteau E, Hernadi K, Seo JW et al (2003) CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem Phys Lett 378:9–17CrossRef Couteau E, Hernadi K, Seo JW et al (2003) CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem Phys Lett 378:9–17CrossRef
277.
go back to reference Eres G, Puretzky AA, Geohegan DB, Cui H (2004) In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on predeposited metal catalyst films. Appl Phys Lett 84:1759CrossRef Eres G, Puretzky AA, Geohegan DB, Cui H (2004) In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on predeposited metal catalyst films. Appl Phys Lett 84:1759CrossRef
278.
go back to reference Sato S, Kawabata A, Nihei M, Awano Y (2003) Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem Phys Lett 382:361–366CrossRef Sato S, Kawabata A, Nihei M, Awano Y (2003) Growth of diameter-controlled carbon nanotubes using monodisperse nickel nanoparticles obtained with a differential mobility analyzer. Chem Phys Lett 382:361–366CrossRef
279.
go back to reference Ibrahim I, Kalbacova J, Engemaier V et al (2015) Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem Mater. doi:10.1021/acs.chemmater.5b02037 Ibrahim I, Kalbacova J, Engemaier V et al (2015) Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem Mater. doi:10.​1021/​acs.​chemmater.​5b02037
280.
go back to reference Bachmatiuk A, Borowiak-Palen E, Rümmeli MH et al (2007) Facilitating the CVD synthesis of seamless double-walled carbon nanotubes. Nanotechnology 18:275610CrossRef Bachmatiuk A, Borowiak-Palen E, Rümmeli MH et al (2007) Facilitating the CVD synthesis of seamless double-walled carbon nanotubes. Nanotechnology 18:275610CrossRef
281.
go back to reference Bachmatiuk A, Börrnert F, Grobosch M et al (2009) Investigating the graphitization mechanism of SiO2 nanoparticles in chemical vapor deposition. ACS Nano 3:4098–4104CrossRef Bachmatiuk A, Börrnert F, Grobosch M et al (2009) Investigating the graphitization mechanism of SiO2 nanoparticles in chemical vapor deposition. ACS Nano 3:4098–4104CrossRef
282.
go back to reference Borowiak-Palen E, Bachmatiuk A, Rümmeli MH et al (2008) Modifying CVD synthesised carbon nanotubes via the carbon feed rate. Phys E Low-dimensional Syst Nanostructures 40:2227–2230CrossRef Borowiak-Palen E, Bachmatiuk A, Rümmeli MH et al (2008) Modifying CVD synthesised carbon nanotubes via the carbon feed rate. Phys E Low-dimensional Syst Nanostructures 40:2227–2230CrossRef
283.
go back to reference Qi H, Qian C, Liu J (2006) Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem Mater 18:5691–5695CrossRef Qi H, Qian C, Liu J (2006) Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem Mater 18:5691–5695CrossRef
284.
go back to reference Reina A, Hofmann M, Zhu D, Kong J (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111:7292–7297CrossRef Reina A, Hofmann M, Zhu D, Kong J (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111:7292–7297CrossRef
285.
go back to reference Liu Y, Pan C, Wang J (2004) Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames. J Mater Sci 39:1091–1094CrossRef Liu Y, Pan C, Wang J (2004) Raman spectra of carbon nanotubes and nanofibers prepared by ethanol flames. J Mater Sci 39:1091–1094CrossRef
286.
go back to reference Das N, Dalai A, Soltan Mohammadzadeh JS, Adjaye J (2006) The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44:2236–2245CrossRef Das N, Dalai A, Soltan Mohammadzadeh JS, Adjaye J (2006) The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44:2236–2245CrossRef
287.
go back to reference Shukla B, Saito T, Yumura M, Iijima S (2009) An efficient carbon precursor for gas phase growth of SWCNTs. Chem Commun 23:3422–3424CrossRef Shukla B, Saito T, Yumura M, Iijima S (2009) An efficient carbon precursor for gas phase growth of SWCNTs. Chem Commun 23:3422–3424CrossRef
288.
go back to reference Tian Y, Hu Z, Yang Y et al (2004) In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J Am Chem Soc 126:1180–1183CrossRef Tian Y, Hu Z, Yang Y et al (2004) In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J Am Chem Soc 126:1180–1183CrossRef
289.
go back to reference Dai H, Rinzler AG, Nikolaev P et al (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475CrossRef Dai H, Rinzler AG, Nikolaev P et al (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475CrossRef
290.
go back to reference Hsieh Y-P, Hofmann M, Kong J (2014) Promoter-assisted chemical vapor deposition of graphene. Carbon 67:417–423CrossRef Hsieh Y-P, Hofmann M, Kong J (2014) Promoter-assisted chemical vapor deposition of graphene. Carbon 67:417–423CrossRef
291.
go back to reference Kim H, Mattevi C, Calvo MR et al (2012) Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6:3614–3623CrossRef Kim H, Mattevi C, Calvo MR et al (2012) Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6:3614–3623CrossRef
292.
go back to reference Vlassiouk I, Smirnov S, Regmi M et al (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117:18919–18926CrossRef Vlassiouk I, Smirnov S, Regmi M et al (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117:18919–18926CrossRef
293.
go back to reference Celebi K, Cole MT, Choi JW et al (2013) Evolutionary kinetics of graphene formation on copper. Nano Lett 13:967–974CrossRef Celebi K, Cole MT, Choi JW et al (2013) Evolutionary kinetics of graphene formation on copper. Nano Lett 13:967–974CrossRef
294.
go back to reference Xu L, Jin Y, Wu Z et al (2013) Transformation of carbon monomers and dimers to graphene islands on Co(0001): thermodynamics and kinetics. J Phys Chem C 117:2952–2958CrossRef Xu L, Jin Y, Wu Z et al (2013) Transformation of carbon monomers and dimers to graphene islands on Co(0001): thermodynamics and kinetics. J Phys Chem C 117:2952–2958CrossRef
295.
go back to reference Loginova E, Bartelt NC, Feibelman PJ, McCarty KF (2008) Evidence for graphene growth by C cluster attachment. New J Phys 10:093026CrossRef Loginova E, Bartelt NC, Feibelman PJ, McCarty KF (2008) Evidence for graphene growth by C cluster attachment. New J Phys 10:093026CrossRef
296.
go back to reference Kim YS, Joo K, Jerng SK et al (2014) Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metal-catalyst-free synthesis. ACS Nano 8:2230–2236CrossRef Kim YS, Joo K, Jerng SK et al (2014) Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metal-catalyst-free synthesis. ACS Nano 8:2230–2236CrossRef
297.
go back to reference Kim H, Saiz E, Chhowalla M, Mattevi C (2013) Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene. New J Phys 15:053012CrossRef Kim H, Saiz E, Chhowalla M, Mattevi C (2013) Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene. New J Phys 15:053012CrossRef
298.
go back to reference Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10:4128–4133CrossRef Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10:4128–4133CrossRef
299.
go back to reference Chen C-JCJ, Back MH, Back RA (1975) The thermal decomposition of methane. I. kinetics of the primary decomposition to C2H6 + H2; rate constant for the homogeneous unimolecular dissociation of methane and its pressure dependence. Can J Chem 53:3580–3590CrossRef Chen C-JCJ, Back MH, Back RA (1975) The thermal decomposition of methane. I. kinetics of the primary decomposition to C2H6 + H2; rate constant for the homogeneous unimolecular dissociation of methane and its pressure dependence. Can J Chem 53:3580–3590CrossRef
300.
go back to reference Alstrup I, Chorkendorff I, Ullmann S (1992) The interaction of CH4 at high temperatures with clean and oxygen precovered Cu(100). Surf Sci 264:95–102CrossRef Alstrup I, Chorkendorff I, Ullmann S (1992) The interaction of CH4 at high temperatures with clean and oxygen precovered Cu(100). Surf Sci 264:95–102CrossRef
301.
go back to reference Zhang Y, Zhang L, Kim P et al (2012) Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties. Nano Lett 12:2810–2816CrossRef Zhang Y, Zhang L, Kim P et al (2012) Vapor trapping growth of single-crystalline graphene flowers: synthesis, morphology, and electronic properties. Nano Lett 12:2810–2816CrossRef
302.
go back to reference Kidambi PR, Bayer BC, Blume R et al (2013) Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett 13:4769–4778CrossRef Kidambi PR, Bayer BC, Blume R et al (2013) Observing graphene grow: catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett 13:4769–4778CrossRef
303.
go back to reference Wang Z-J, Weinberg G, Zhang Q et al (2015) Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9:1506–1519CrossRef Wang Z-J, Weinberg G, Zhang Q et al (2015) Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9:1506–1519CrossRef
304.
go back to reference N’Diaye AT, van Gastel R, Martínez-Galera AJ et al (2009) In situ observation of stress relaxation in epitaxial graphene. New J Phys 11:113056CrossRef N’Diaye AT, van Gastel R, Martínez-Galera AJ et al (2009) In situ observation of stress relaxation in epitaxial graphene. New J Phys 11:113056CrossRef
305.
go back to reference Nie S, Walter AL, Bartelt NC et al (2011) Growth from below: graphene bilayers on Ir(111). ACS Nano 5:2298–2306CrossRef Nie S, Walter AL, Bartelt NC et al (2011) Growth from below: graphene bilayers on Ir(111). ACS Nano 5:2298–2306CrossRef
306.
go back to reference Weatherup RS, Bayer BC, Blume R et al (2011) In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett 11:4154–4160CrossRef Weatherup RS, Bayer BC, Blume R et al (2011) In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett 11:4154–4160CrossRef
307.
go back to reference Xing S, Wu W, Wang Y et al (2013) Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chem Phys Lett 580:62–66CrossRef Xing S, Wu W, Wang Y et al (2013) Kinetic study of graphene growth: temperature perspective on growth rate and film thickness by chemical vapor deposition. Chem Phys Lett 580:62–66CrossRef
308.
go back to reference Colombo L, Li X, Han B et al (2010) Growth kinetics and defects of CVD graphene on Cu. ECS Trans 28(5):109–114CrossRef Colombo L, Li X, Han B et al (2010) Growth kinetics and defects of CVD graphene on Cu. ECS Trans 28(5):109–114CrossRef
309.
go back to reference Han Z, Kimouche A, Kalita D et al (2014) Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils. Adv Funct Mater 24:964–970CrossRef Han Z, Kimouche A, Kalita D et al (2014) Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils. Adv Funct Mater 24:964–970CrossRef
310.
go back to reference Fang W, Hsu A, Shin YC et al (2015) Application of tungsten as a carbon sink for synthesis of large-domain uniform monolayer graphene free of bilayers/multilayers. Nanoscale 7:4929–4934CrossRef Fang W, Hsu A, Shin YC et al (2015) Application of tungsten as a carbon sink for synthesis of large-domain uniform monolayer graphene free of bilayers/multilayers. Nanoscale 7:4929–4934CrossRef
311.
go back to reference Pan Z, Liu N, Fu L, Liu Z (2011) Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. J Am Chem Soc 133:17578–17581CrossRef Pan Z, Liu N, Fu L, Liu Z (2011) Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. J Am Chem Soc 133:17578–17581CrossRef
312.
go back to reference Fang W, Hsu AL, Caudillo R et al (2013) Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by raman spectroscopy. Nano Lett 13:1541–1548 Fang W, Hsu AL, Caudillo R et al (2013) Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by raman spectroscopy. Nano Lett 13:1541–1548
313.
go back to reference Li Q, Chou H, Zhong J-H et al (2013) Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett 13:486–490CrossRef Li Q, Chou H, Zhong J-H et al (2013) Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett 13:486–490CrossRef
314.
go back to reference Nie S, Wu W, Xing S et al (2012) Growth from below: bilayer graphene on copper by chemical vapor deposition. New J Phys 14:093028CrossRef Nie S, Wu W, Xing S et al (2012) Growth from below: bilayer graphene on copper by chemical vapor deposition. New J Phys 14:093028CrossRef
315.
go back to reference Kalbac M, Frank O, Kavan L (2012) The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon 50:3682–3687CrossRef Kalbac M, Frank O, Kavan L (2012) The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon 50:3682–3687CrossRef
316.
go back to reference Robertson AW, Warner JH (2011) Hexagonal Single crystal domains of few-layer graphene on copper foils. Nano Lett 11:1182–1189CrossRef Robertson AW, Warner JH (2011) Hexagonal Single crystal domains of few-layer graphene on copper foils. Nano Lett 11:1182–1189CrossRef
317.
go back to reference Geng D, Wu B, Guo Y et al (2012) Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci 109:7992–7996CrossRef Geng D, Wu B, Guo Y et al (2012) Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci 109:7992–7996CrossRef
318.
go back to reference Wang J, Zeng M, Tan L et al (2013) High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Sci Rep 3:2670 Wang J, Zeng M, Tan L et al (2013) High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Sci Rep 3:2670
319.
go back to reference Wu Y, Hao Y, Jeong HY et al (2013) Crystal structure evolution of individual graphene islands during CVD growth on copper foil. Adv Mater 25:6744–6751CrossRef Wu Y, Hao Y, Jeong HY et al (2013) Crystal structure evolution of individual graphene islands during CVD growth on copper foil. Adv Mater 25:6744–6751CrossRef
320.
go back to reference Murdock AT, Koos A, Ben Britton T et al (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7:1351–1359CrossRef Murdock AT, Koos A, Ben Britton T et al (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7:1351–1359CrossRef
321.
go back to reference Hayashi K, Sato S, Ikeda M et al (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492–12498CrossRef Hayashi K, Sato S, Ikeda M et al (2012) Selective graphene formation on copper twin crystals. J Am Chem Soc 134:12492–12498CrossRef
322.
go back to reference Wood JD, Schmucker SW, Lyons AS et al (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554CrossRef Wood JD, Schmucker SW, Lyons AS et al (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547–4554CrossRef
323.
go back to reference Dai G-P, Wu MH, Taylor DK, Vinodgopal K (2013) Square-shaped, single-crystal, monolayer graphene domains by low-pressure chemical vapor deposition. Mater Res Lett 1:67–76CrossRef Dai G-P, Wu MH, Taylor DK, Vinodgopal K (2013) Square-shaped, single-crystal, monolayer graphene domains by low-pressure chemical vapor deposition. Mater Res Lett 1:67–76CrossRef
324.
go back to reference Son IH, Song HJ, Kwon S et al (2014) CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8:9224–9232CrossRef Son IH, Song HJ, Kwon S et al (2014) CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8:9224–9232CrossRef
325.
go back to reference Natesan K, Kassner TF (1973) Thermodynamics of carbon in nickel, iron-nickel and iron-chromium-nickel alloys. Metall Trans 4:2557–2566CrossRef Natesan K, Kassner TF (1973) Thermodynamics of carbon in nickel, iron-nickel and iron-chromium-nickel alloys. Metall Trans 4:2557–2566CrossRef
326.
go back to reference Delamoreanu A, Rabot C, Vallee C, Zenasni A (2014) Wafer scale catalytic growth of graphene on nickel by solid carbon source. Carbon 66:48–56CrossRef Delamoreanu A, Rabot C, Vallee C, Zenasni A (2014) Wafer scale catalytic growth of graphene on nickel by solid carbon source. Carbon 66:48–56CrossRef
327.
go back to reference Lahiri J, Miller T, Adamska L et al (2011) Graphene growth on Ni(111) by transformation of a surface carbide. Nano Lett 11:518–522CrossRef Lahiri J, Miller T, Adamska L et al (2011) Graphene growth on Ni(111) by transformation of a surface carbide. Nano Lett 11:518–522CrossRef
328.
go back to reference Thiele S, Reina A, Healey P et al (2010) Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21:015601CrossRef Thiele S, Reina A, Healey P et al (2010) Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21:015601CrossRef
329.
go back to reference Kim H, Song I, Park C et al (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7:6575–6582CrossRef Kim H, Song I, Park C et al (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7:6575–6582CrossRef
330.
go back to reference Zhang L, Shi Z, Liu D et al (2012) Vapour-phase graphene epitaxy at low temperatures. Nano Res 5:258–264CrossRef Zhang L, Shi Z, Liu D et al (2012) Vapour-phase graphene epitaxy at low temperatures. Nano Res 5:258–264CrossRef
331.
go back to reference Wei D, Lu Y, Han C et al (2013) Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chemie Int Ed 52:14121–14126CrossRef Wei D, Lu Y, Han C et al (2013) Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew Chemie Int Ed 52:14121–14126CrossRef
332.
go back to reference Li X, Zhu Y, Cai W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRef Li X, Zhu Y, Cai W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRef
333.
go back to reference Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916–6924CrossRef Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916–6924CrossRef
334.
go back to reference O’Hern SC, Stewart CA, Boutilier MSH et al (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–10138CrossRef O’Hern SC, Stewart CA, Boutilier MSH et al (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–10138CrossRef
335.
go back to reference Pirkle A, Chan J, Venugopal A et al (2011) The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett 99:122108CrossRef Pirkle A, Chan J, Venugopal A et al (2011) The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett 99:122108CrossRef
336.
go back to reference Lin Y-C, Jin C, Lee J-C et al (2011) Clean transfer of graphene for isolation and suspension. ACS Nano 5:2362–2368CrossRef Lin Y-C, Jin C, Lee J-C et al (2011) Clean transfer of graphene for isolation and suspension. ACS Nano 5:2362–2368CrossRef
337.
go back to reference Gorantla S, Bachmatiuk A, Hwang J et al (2014) A universal transfer route for graphene. Nanoscale 6:889–896CrossRef Gorantla S, Bachmatiuk A, Hwang J et al (2014) A universal transfer route for graphene. Nanoscale 6:889–896CrossRef
338.
go back to reference Gao L, Ren W, Xu H et al (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699CrossRef Gao L, Ren W, Xu H et al (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699CrossRef
339.
go back to reference Wang Y, Zheng Y, Xu X et al (2011) Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5:9927–9933CrossRef Wang Y, Zheng Y, Xu X et al (2011) Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5:9927–9933CrossRef
340.
go back to reference Lin W-HH, Chen T-HH, Chang J-KK et al (2014) A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 8:1784–1791CrossRef Lin W-HH, Chen T-HH, Chang J-KK et al (2014) A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 8:1784–1791CrossRef
341.
go back to reference Na SR, Suk JW, Tao L et al (2015) Selective mechanical transfer of graphene from seed copper foil using rate effects. ACS Nano 9:1325–1335CrossRef Na SR, Suk JW, Tao L et al (2015) Selective mechanical transfer of graphene from seed copper foil using rate effects. ACS Nano 9:1325–1335CrossRef
342.
go back to reference Lee WH, Suk JW, Lee J et al (2012) Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 6:1284–1290CrossRef Lee WH, Suk JW, Lee J et al (2012) Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 6:1284–1290CrossRef
343.
go back to reference Gao L, Ni G-X, Liu Y et al (2013) Face-to-face transfer of wafer-scale graphene films. Nature 505:190–194CrossRef Gao L, Ni G-X, Liu Y et al (2013) Face-to-face transfer of wafer-scale graphene films. Nature 505:190–194CrossRef
344.
go back to reference Ding L, Tselev A, Wang J et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805CrossRef Ding L, Tselev A, Wang J et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805CrossRef
345.
go back to reference Williams KR, Gupta K, Wasilik M (2003) Etch rates for micromachining processing-part II. J Microelectromechanical Syst 12(6):761–778CrossRef Williams KR, Gupta K, Wasilik M (2003) Etch rates for micromachining processing-part II. J Microelectromechanical Syst 12(6):761–778CrossRef
346.
go back to reference Rümmeli M, Bachmatiuk A, Börrnert F et al (2011) Synthesis of carbon nanotubes with and without catalyst particles. Nanoscale Res Lett 6:303CrossRef Rümmeli M, Bachmatiuk A, Börrnert F et al (2011) Synthesis of carbon nanotubes with and without catalyst particles. Nanoscale Res Lett 6:303CrossRef
347.
go back to reference Ding L, Zhou W, McNicholas TP et al (2009) Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res 2:903–910CrossRef Ding L, Zhou W, McNicholas TP et al (2009) Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res 2:903–910CrossRef
348.
go back to reference Ibrahim I, Bachmatiuk A, Börrnert F et al (2011) Optimizing substrate surface and catalyst conditions for high yield chemical vapor deposition grown epitaxially aligned single-walled carbon nanotubes. Carbon 49:5029–5037CrossRef Ibrahim I, Bachmatiuk A, Börrnert F et al (2011) Optimizing substrate surface and catalyst conditions for high yield chemical vapor deposition grown epitaxially aligned single-walled carbon nanotubes. Carbon 49:5029–5037CrossRef
349.
go back to reference Ci L, Rao Z, Zhou Z et al (2002) Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem Phys Lett 359:63–67CrossRef Ci L, Rao Z, Zhou Z et al (2002) Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem Phys Lett 359:63–67CrossRef
350.
go back to reference Loffler M, Rummeli MH, Kramberger C et al (2008) On the formation of single-walled carbon nanotubes in pulsed-laser-assisted chemical vapor deposition. Chem Mater 20:128–134CrossRef Loffler M, Rummeli MH, Kramberger C et al (2008) On the formation of single-walled carbon nanotubes in pulsed-laser-assisted chemical vapor deposition. Chem Mater 20:128–134CrossRef
351.
go back to reference Hata K, Futaba D, Mizuno K et al (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364CrossRef Hata K, Futaba D, Mizuno K et al (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364CrossRef
352.
go back to reference Yamada T, Namai T, Hata K et al (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–136CrossRef Yamada T, Namai T, Hata K et al (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–136CrossRef
353.
go back to reference Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125:5636–5637CrossRef Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125:5636–5637CrossRef
354.
go back to reference Ibrahim I, Bachmatiuk A, Grimm D et al (2012) Understanding high-yield catalyst-free growth of horizontally aligned single-walled carbon nanotubes nucleated by activated C60 species. ACS Nano 6:10825–10834 Ibrahim I, Bachmatiuk A, Grimm D et al (2012) Understanding high-yield catalyst-free growth of horizontally aligned single-walled carbon nanotubes nucleated by activated C60 species. ACS Nano 6:10825–10834
355.
go back to reference Ibrahim I, Bachmatiuk A, Warner JH et al (2012) CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms. Small 8:1973–1992CrossRef Ibrahim I, Bachmatiuk A, Warner JH et al (2012) CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms. Small 8:1973–1992CrossRef
356.
go back to reference Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2:1137–1141CrossRef Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2:1137–1141CrossRef
357.
go back to reference Liu B, Ren W, Gao L et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131:2082–2083CrossRef Liu B, Ren W, Gao L et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131:2082–2083CrossRef
358.
go back to reference Maruyama S, Kojima R, Miyauchi Y et al (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234CrossRef Maruyama S, Kojima R, Miyauchi Y et al (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234CrossRef
359.
go back to reference Takagi D, Kobayashi Y, Homma Y (2009) Carbon nanotube growth from diamond. J Am Chem Soc 131:6922–6923CrossRef Takagi D, Kobayashi Y, Homma Y (2009) Carbon nanotube growth from diamond. J Am Chem Soc 131:6922–6923CrossRef
360.
go back to reference Liu J, Wang C, Tu X et al (2012) Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat Commun 3:1199CrossRef Liu J, Wang C, Tu X et al (2012) Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Nat Commun 3:1199CrossRef
361.
go back to reference Yao Y, Feng C, Zhang J, Liu Z (2009) Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9:1673–1677CrossRef Yao Y, Feng C, Zhang J, Liu Z (2009) Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9:1673–1677CrossRef
362.
go back to reference Cheng H-C, Lin K-C, Tai H-C et al (2007) Growth and field emission characteristics of carbon nanotubes using Co/Cr/Al multilayer catalyst. Jpn J Appl Phys 46:4359–4363CrossRef Cheng H-C, Lin K-C, Tai H-C et al (2007) Growth and field emission characteristics of carbon nanotubes using Co/Cr/Al multilayer catalyst. Jpn J Appl Phys 46:4359–4363CrossRef
363.
go back to reference Chhowalla M, Teo KBK, Ducati C et al (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308CrossRef Chhowalla M, Teo KBK, Ducati C et al (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys 90:5308CrossRef
364.
go back to reference Ducati C, Alexandrou I, Chhowalla M et al (2002) Temperature selective growth of carbon nanotubes by chemical vapor deposition. J Appl Phys 92:3299–3303CrossRef Ducati C, Alexandrou I, Chhowalla M et al (2002) Temperature selective growth of carbon nanotubes by chemical vapor deposition. J Appl Phys 92:3299–3303CrossRef
365.
go back to reference Kim K-EK-J, Kim K-EK-J, Jung WS et al (2005) Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene. Chem Phys Lett 401:459–464CrossRef Kim K-EK-J, Kim K-EK-J, Jung WS et al (2005) Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene. Chem Phys Lett 401:459–464CrossRef
366.
go back to reference Picher M, Navas H, Arenal R et al (2012) Influence of the growth conditions on the defect density of single-walled carbon nanotubes. Carbon 50:2407–2416CrossRef Picher M, Navas H, Arenal R et al (2012) Influence of the growth conditions on the defect density of single-walled carbon nanotubes. Carbon 50:2407–2416CrossRef
367.
go back to reference Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661–4663CrossRef Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661–4663CrossRef
368.
go back to reference Ding F, Bolton K, Rosén A (2004) Nucleation and growth of single-walled carbon nanotubes: a molecular dynamics study. J Phys Chem B. 108(45):17369–17377CrossRef Ding F, Bolton K, Rosén A (2004) Nucleation and growth of single-walled carbon nanotubes: a molecular dynamics study. J Phys Chem B. 108(45):17369–17377CrossRef
369.
go back to reference Kukovitsky EF, L’vov SG, Sainov NA (2000) VLS-growth of carbon nanotubes from the vapor. Chem Phys Lett 317:65–70CrossRef Kukovitsky EF, L’vov SG, Sainov NA (2000) VLS-growth of carbon nanotubes from the vapor. Chem Phys Lett 317:65–70CrossRef
370.
go back to reference Kukovitsky EF, L’vov SG, Sainov NA et al (2002) Correlation between metal catalyst particle size and carbon nanotube growth. Chem Phys Lett 355:497–503CrossRef Kukovitsky EF, L’vov SG, Sainov NA et al (2002) Correlation between metal catalyst particle size and carbon nanotube growth. Chem Phys Lett 355:497–503CrossRef
371.
go back to reference Shibuta Y, Suzuki T (2010) Melting and solidification point of fcc-metal nanoparticles with respect to particle size: a molecular dynamics study. Chem Phys Lett 498:323–327CrossRef Shibuta Y, Suzuki T (2010) Melting and solidification point of fcc-metal nanoparticles with respect to particle size: a molecular dynamics study. Chem Phys Lett 498:323–327CrossRef
372.
go back to reference Harutyunyan AR, Tokune T, Mora E (2005) Liquid as a required catalyst phase for carbon single-walled nanotube growth. Appl Phys Lett 87:051919CrossRef Harutyunyan AR, Tokune T, Mora E (2005) Liquid as a required catalyst phase for carbon single-walled nanotube growth. Appl Phys Lett 87:051919CrossRef
373.
go back to reference Hofmann S, Csányi G, Ferrari AC et al (2005) Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett 95:036101CrossRef Hofmann S, Csányi G, Ferrari AC et al (2005) Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett 95:036101CrossRef
374.
go back to reference Klinke C, Bonard JM, Kern K (2005) Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Phys Rev B 71:035403CrossRef Klinke C, Bonard JM, Kern K (2005) Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Phys Rev B 71:035403CrossRef
375.
go back to reference Barreiro A, Kramberger C, Rümmeli MH et al (2007) Control of the single-wall carbon nanotube mean diameter in sulphur promoted aerosol-assisted chemical vapour deposition. Carbon 45:55–61CrossRef Barreiro A, Kramberger C, Rümmeli MH et al (2007) Control of the single-wall carbon nanotube mean diameter in sulphur promoted aerosol-assisted chemical vapour deposition. Carbon 45:55–61CrossRef
376.
go back to reference Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433CrossRef Cheung CL, Kurtz A, Park H, Lieber CM (2002) Diameter-controlled synthesis of carbon nanotubes. J Phys Chem B 106:2429–2433CrossRef
377.
go back to reference Schäffel F, Kramberger C, Rümmeli MH et al (2007) Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem Mater 19:5006–5009CrossRef Schäffel F, Kramberger C, Rümmeli MH et al (2007) Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem Mater 19:5006–5009CrossRef
378.
go back to reference Thurakitseree T, Kramberger C, Zhao P et al (2012) Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. Carbon 50:2635–2640CrossRef Thurakitseree T, Kramberger C, Zhao P et al (2012) Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. Carbon 50:2635–2640CrossRef
379.
go back to reference Marchand M, Journet C, Guillot D et al (2009) Growing a carbon nanotube atom by atom: “and yet it does turn”. Nano Lett 9:2961–2966CrossRef Marchand M, Journet C, Guillot D et al (2009) Growing a carbon nanotube atom by atom: “and yet it does turn”. Nano Lett 9:2961–2966CrossRef
380.
go back to reference Neyts EC, Van Duin ACT, Bogaerts A (2011) Changing chirality during single-walled carbon nanotube growth: a reactive molecular dynamics/monte carlo study. J Am Chem Soc 133:17225–17231CrossRef Neyts EC, Van Duin ACT, Bogaerts A (2011) Changing chirality during single-walled carbon nanotube growth: a reactive molecular dynamics/monte carlo study. J Am Chem Soc 133:17225–17231CrossRef
381.
go back to reference Wang Q, Ng MF, Yang SW et al (2010) The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS Nano 4:939–946CrossRef Wang Q, Ng MF, Yang SW et al (2010) The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS Nano 4:939–946CrossRef
382.
go back to reference Hart AJ, Van Laake L, Slocum AH (2007) Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3:772–777CrossRef Hart AJ, Van Laake L, Slocum AH (2007) Desktop growth of carbon-nanotube monoliths with in situ optical imaging. Small 3:772–777CrossRef
383.
go back to reference Geohegan DB, Puretzky AA, Ivanov IN et al (2003) In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes. Appl Phys Lett 83:1851–1853CrossRef Geohegan DB, Puretzky AA, Ivanov IN et al (2003) In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes. Appl Phys Lett 83:1851–1853CrossRef
384.
go back to reference Puretzky AA, Geohegan DB, Jesse S et al (2005) In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A 81:223–240CrossRef Puretzky AA, Geohegan DB, Jesse S et al (2005) In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A 81:223–240CrossRef
385.
go back to reference Einarsson E, Murakami Y, Kadowaki M, Maruyama S (2008) Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46:923–930CrossRef Einarsson E, Murakami Y, Kadowaki M, Maruyama S (2008) Growth dynamics of vertically aligned single-walled carbon nanotubes from in situ measurements. Carbon 46:923–930CrossRef
386.
go back to reference Chiashi S, Murakami Y, Miyauchi Y, Maruyama S (2004) Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chem Phys Lett 386:89–94CrossRef Chiashi S, Murakami Y, Miyauchi Y, Maruyama S (2004) Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chem Phys Lett 386:89–94CrossRef
387.
go back to reference Picher M, Anglaret E, Arenal R, Jourdain V (2009) Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements. Nano Lett 9:542–547CrossRef Picher M, Anglaret E, Arenal R, Jourdain V (2009) Self-deactivation of single-walled carbon nanotube growth studied by in situ Raman measurements. Nano Lett 9:542–547CrossRef
388.
go back to reference Rao R, Liptak D, Cherukuri T et al (2012) In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat Mater 11:213–216CrossRef Rao R, Liptak D, Cherukuri T et al (2012) In situ evidence for chirality-dependent growth rates of individual carbon nanotubes. Nat Mater 11:213–216CrossRef
389.
go back to reference Reinhold-López K, Braeuer A, Romann B et al (2014) Simultaneous in situ Raman monitoring of the solid and gas phases during the formation and growth of carbon nanostructures inside a cold wall CCVD reactor. Carbon 78:164–180CrossRef Reinhold-López K, Braeuer A, Romann B et al (2014) Simultaneous in situ Raman monitoring of the solid and gas phases during the formation and growth of carbon nanostructures inside a cold wall CCVD reactor. Carbon 78:164–180CrossRef
390.
go back to reference Nishimura K, Okazaki N, Pan L, Nakayama Y (2004) In situ study of iron catalysts for carbon nanotube growth using X-ray diffraction analysis. Jpn J Appl Phys 43:L471–L474CrossRef Nishimura K, Okazaki N, Pan L, Nakayama Y (2004) In situ study of iron catalysts for carbon nanotube growth using X-ray diffraction analysis. Jpn J Appl Phys 43:L471–L474CrossRef
391.
go back to reference Mattevi C, Wirth CT, Hofmann S et al (2008) In-situ X-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J Phys Chem C 112:12207–12213CrossRef Mattevi C, Wirth CT, Hofmann S et al (2008) In-situ X-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests. J Phys Chem C 112:12207–12213CrossRef
392.
go back to reference Lin M, Ying Tan JP, Boothroyd C et al (2006) Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett 6:449–452CrossRef Lin M, Ying Tan JP, Boothroyd C et al (2006) Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett 6:449–452CrossRef
393.
go back to reference Yoshida H, Takeda S, Uchiyama T et al (2008) Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8:2082–2086CrossRef Yoshida H, Takeda S, Uchiyama T et al (2008) Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8:2082–2086CrossRef
394.
go back to reference Zhang L, Hou PX, Li S et al (2014) In situ TEM observations on the sulfur-assisted catalytic growth of single-wall carbon nanotubes. J Phys Chem Lett 5:1427–1432CrossRef Zhang L, Hou PX, Li S et al (2014) In situ TEM observations on the sulfur-assisted catalytic growth of single-wall carbon nanotubes. J Phys Chem Lett 5:1427–1432CrossRef
395.
go back to reference Futaba DN, Hata K, Yamada T et al (2005) Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett 95:056104CrossRef Futaba DN, Hata K, Yamada T et al (2005) Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett 95:056104CrossRef
396.
go back to reference Helveg S, López-Cartes C, Sehested J et al (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429CrossRef Helveg S, López-Cartes C, Sehested J et al (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429CrossRef
397.
go back to reference Stadermann M, Sherlock SP, In J-B et al (2009) Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett 9:738–744CrossRef Stadermann M, Sherlock SP, In J-B et al (2009) Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett 9:738–744CrossRef
398.
go back to reference Yamada T, Maigne A, Yudasaka M et al (2008) Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett 8:4288–4292CrossRef Yamada T, Maigne A, Yudasaka M et al (2008) Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett 8:4288–4292CrossRef
399.
go back to reference Nishino H, Yasuda S, Namai T et al (2007) Water-assisted highly efficient synthesis of single-walled carbon nanotubes forests from colloidal nanoparticle catalysts. J Phys Chem C 111:17961–17965CrossRef Nishino H, Yasuda S, Namai T et al (2007) Water-assisted highly efficient synthesis of single-walled carbon nanotubes forests from colloidal nanoparticle catalysts. J Phys Chem C 111:17961–17965CrossRef
400.
go back to reference Pint CL, Pheasant ST, Parra-Vasquez ANG et al (2009) Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J Phys Chem C 113:4125–4133CrossRef Pint CL, Pheasant ST, Parra-Vasquez ANG et al (2009) Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes. J Phys Chem C 113:4125–4133CrossRef
401.
go back to reference Reilly PTA, Whitten WB (2006) The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process. Carbon 44:1653–1660CrossRef Reilly PTA, Whitten WB (2006) The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process. Carbon 44:1653–1660CrossRef
402.
go back to reference Schünemann C, Schäffel F, Bachmatiuk A et al (2011) Catalyst poisoning by amorphous carbon during carbon nanotube growth: fact or fiction? ACS Nano 5:8928–8934CrossRef Schünemann C, Schäffel F, Bachmatiuk A et al (2011) Catalyst poisoning by amorphous carbon during carbon nanotube growth: fact or fiction? ACS Nano 5:8928–8934CrossRef
403.
go back to reference Xiang R, Yang Z, Zhang Q et al (2008) Growth deceleration of vertically aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled? J Phys Chem C 112:4892–4896CrossRef Xiang R, Yang Z, Zhang Q et al (2008) Growth deceleration of vertically aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled? J Phys Chem C 112:4892–4896CrossRef
404.
go back to reference Bedewy M, Meshot ER, Guo H et al (2009) Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J Phys Chem C 113:20576–20582CrossRef Bedewy M, Meshot ER, Guo H et al (2009) Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J Phys Chem C 113:20576–20582CrossRef
405.
go back to reference Bower C, Zhou O, Zhu W et al (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769CrossRef Bower C, Zhou O, Zhu W et al (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769CrossRef
406.
go back to reference Li J, Papadopoulos C, Xu JM, Moskovits M (1999) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367–369CrossRef Li J, Papadopoulos C, Xu JM, Moskovits M (1999) Highly-ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367–369CrossRef
407.
go back to reference Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758CrossRef Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758CrossRef
408.
go back to reference Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8:3233–3250CrossRef Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8:3233–3250CrossRef
409.
go back to reference Tibbetts GG (1984) Why are carbon filaments tubular? J Cryst Growth 66:632–638CrossRef Tibbetts GG (1984) Why are carbon filaments tubular? J Cryst Growth 66:632–638CrossRef
410.
go back to reference Ding F, Bolton K, Rosén A (2006) Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput Mater Sci 35:243–246CrossRef Ding F, Bolton K, Rosén A (2006) Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput Mater Sci 35:243–246CrossRef
411.
go back to reference Bolton K, Ding F, Rosén A (2006) Atomistic simulations of catalyzed carbon nanotube growth. J Nanosci Nanotechnol 6:1211–1224CrossRef Bolton K, Ding F, Rosén A (2006) Atomistic simulations of catalyzed carbon nanotube growth. J Nanosci Nanotechnol 6:1211–1224CrossRef
412.
go back to reference Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317:497–503CrossRef Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem Phys Lett 317:497–503CrossRef
413.
go back to reference Li Y, Liu J, Wang Y, Wang ZL (2001) Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater 13:1008–1014CrossRef Li Y, Liu J, Wang Y, Wang ZL (2001) Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater 13:1008–1014CrossRef
414.
go back to reference Thurakitseree T, Einarsson E, Xiang R et al (2012) Diameter controlled chemical vapor deposition synthesis of single-walled carbon nanotubes. J Nanosci Nanotechnol 12:370–376CrossRef Thurakitseree T, Einarsson E, Xiang R et al (2012) Diameter controlled chemical vapor deposition synthesis of single-walled carbon nanotubes. J Nanosci Nanotechnol 12:370–376CrossRef
415.
go back to reference Ayala P, Grüneis A, Gemming T et al (2007) Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock. J Phys Chem C 111:2879–2884CrossRef Ayala P, Grüneis A, Gemming T et al (2007) Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock. J Phys Chem C 111:2879–2884CrossRef
416.
go back to reference Cassell MA, Raymakers AJ, Kong J et al (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492CrossRef Cassell MA, Raymakers AJ, Kong J et al (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492CrossRef
417.
go back to reference Liu B, Ren W, Li S et al (2012) High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem Commun 48:2409CrossRef Liu B, Ren W, Li S et al (2012) High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst. Chem Commun 48:2409CrossRef
418.
go back to reference Yang F, Wang X, Zhang D et al (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524CrossRef Yang F, Wang X, Zhang D et al (2014) Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510:522–524CrossRef
419.
go back to reference Wang H, Wei L, Ren F et al (2013) Chiral-selective CoSo4/SiO2 catalyst for (9,8) single-walled carbon nanotube growth. ACS Nano 7:614–626CrossRef Wang H, Wei L, Ren F et al (2013) Chiral-selective CoSo4/SiO2 catalyst for (9,8) single-walled carbon nanotube growth. ACS Nano 7:614–626CrossRef
420.
go back to reference Wang H, Wang B, Quek XY et al (2010) Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J Am Chem Soc 132:16747–16749CrossRef Wang H, Wang B, Quek XY et al (2010) Selective synthesis of (9,8) single walled carbon nanotubes on cobalt incorporated TUD-1 catalysts. J Am Chem Soc 132:16747–16749CrossRef
421.
go back to reference He M, Jiang H, Liu B et al (2013) Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci Rep 3:1460 He M, Jiang H, Liu B et al (2013) Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles. Sci Rep 3:1460
422.
go back to reference Ding F, Harutyunyan AR, Yakobson BI (2009) Dislocation theory of chirality-controlled nanotube growth. Proc Natl Acad Sci USA 106:2506–2509CrossRef Ding F, Harutyunyan AR, Yakobson BI (2009) Dislocation theory of chirality-controlled nanotube growth. Proc Natl Acad Sci USA 106:2506–2509CrossRef
423.
go back to reference Ibrahim I, Zhang Y, Popov A et al (2013) Growth of all-carbon horizontally aligned single-walled carbon nanotubes nucleated from fullerene-based structures. Nanoscale Res Lett 8:265CrossRef Ibrahim I, Zhang Y, Popov A et al (2013) Growth of all-carbon horizontally aligned single-walled carbon nanotubes nucleated from fullerene-based structures. Nanoscale Res Lett 8:265CrossRef
424.
go back to reference Yu X, Zhang J, Choi W et al (2010) Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett 10:3343–3349CrossRef Yu X, Zhang J, Choi W et al (2010) Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett 10:3343–3349CrossRef
425.
go back to reference Liu Y, Xu M, Zhu X et al (2014) Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68:399–405CrossRef Liu Y, Xu M, Zhu X et al (2014) Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon 68:399–405CrossRef
426.
go back to reference Takagi D, Hibino H, Suzuki S et al (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7:2272–2275CrossRef Takagi D, Hibino H, Suzuki S et al (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7:2272–2275CrossRef
427.
go back to reference Scott A, Dianat A, Börrnert F et al (2011) The catalytic potential of high-κ dielectrics for graphene formation. Appl Phys Lett 98:073110CrossRef Scott A, Dianat A, Börrnert F et al (2011) The catalytic potential of high-κ dielectrics for graphene formation. Appl Phys Lett 98:073110CrossRef
428.
go back to reference Huang S, Cai Q, Chen J et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J Am Chem Soc 131:2094–2095CrossRef Huang S, Cai Q, Chen J et al (2009) Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J Am Chem Soc 131:2094–2095CrossRef
429.
go back to reference Liu B, Tang DM, Sun C et al (2011) Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism. J Am Chem Soc 133:197–199CrossRef Liu B, Tang DM, Sun C et al (2011) Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism. J Am Chem Soc 133:197–199CrossRef
430.
go back to reference Kang L, Hu Y, Liu L et al (2015) Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett 15:403–409CrossRef Kang L, Hu Y, Liu L et al (2015) Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett 15:403–409CrossRef
431.
go back to reference Steiner SA, Baumann TF, Bayer BC et al (2009) Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131:12144–12154CrossRef Steiner SA, Baumann TF, Bayer BC et al (2009) Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131:12144–12154CrossRef
432.
go back to reference Kudo A, Steiner SA, Bayer BC et al (2014) CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield. J Am Chem Soc 136:17808–17817CrossRef Kudo A, Steiner SA, Bayer BC et al (2014) CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield. J Am Chem Soc 136:17808–17817CrossRef
433.
go back to reference Ning G, Xu C, Zhu X et al (2013) MgO-catalyzed growth of N-doped wrinkled carbon nanotubes. Carbon 56:38–44CrossRef Ning G, Xu C, Zhu X et al (2013) MgO-catalyzed growth of N-doped wrinkled carbon nanotubes. Carbon 56:38–44CrossRef
434.
go back to reference Gao F, Zhang L, Huang S (2010) Zinc oxide catalyzed growth of single-walled carbon nanotubes. Appl Surf Sci 256:2323–2326CrossRef Gao F, Zhang L, Huang S (2010) Zinc oxide catalyzed growth of single-walled carbon nanotubes. Appl Surf Sci 256:2323–2326CrossRef
435.
go back to reference Lin J-H, Chen C-S, Rümmeli MH, Zeng Z-Y (2010) Self-assembly formation of multi-walled carbon nanotubes on gold surfaces. Nanoscale 2:2835–2840CrossRef Lin J-H, Chen C-S, Rümmeli MH, Zeng Z-Y (2010) Self-assembly formation of multi-walled carbon nanotubes on gold surfaces. Nanoscale 2:2835–2840CrossRef
436.
go back to reference Liu BL, Ren WC, Gao LB et al (2008) Manganese-catalyzed surface growth of single-walled carbon nanotubes with high efficiency. J Phys Chem C 112:19231–19235CrossRef Liu BL, Ren WC, Gao LB et al (2008) Manganese-catalyzed surface growth of single-walled carbon nanotubes with high efficiency. J Phys Chem C 112:19231–19235CrossRef
437.
go back to reference Yuan D, Ding L, Chu H et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579CrossRef Yuan D, Ding L, Chu H et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579CrossRef
438.
go back to reference Takagi D, Homma Y, Hibino H et al (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6:2642–2645CrossRef Takagi D, Homma Y, Hibino H et al (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6:2642–2645CrossRef
439.
go back to reference Zhou W, Han Z, Wang J et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6:2987–2990CrossRef Zhou W, Han Z, Wang J et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6:2987–2990CrossRef
440.
go back to reference Mizutani Y, Fukuoka N, Naritsuka S et al (2012) Single-walled carbon nanotube synthesis on SiO2/Si substrates at very low pressures by the alcohol gas source method using a Pt catalyst. Diam Relat Mater 26:78–82CrossRef Mizutani Y, Fukuoka N, Naritsuka S et al (2012) Single-walled carbon nanotube synthesis on SiO2/Si substrates at very low pressures by the alcohol gas source method using a Pt catalyst. Diam Relat Mater 26:78–82CrossRef
441.
go back to reference Ritschel M, Leonhardt A, Elefant D et al (2007) Rhenium-catalyzed growth carbon nanotubes. J Phys Chem C 111:8414–8417CrossRef Ritschel M, Leonhardt A, Elefant D et al (2007) Rhenium-catalyzed growth carbon nanotubes. J Phys Chem C 111:8414–8417CrossRef
442.
go back to reference Xu X, Yang C, Yang Z et al (2014) Carbon nanotube growth from alkali metal salt nanoparticles. Carbon 80:490–495CrossRef Xu X, Yang C, Yang Z et al (2014) Carbon nanotube growth from alkali metal salt nanoparticles. Carbon 80:490–495CrossRef
Metadata
Title
CVD growth of 1D and 2D sp2 carbon nanomaterials
Authors
Jinbo Pang
Alicja Bachmatiuk
Imad Ibrahim
Lei Fu
Daniela Placha
Grazyna Simha Martynkova
Barbara Trzebicka
Thomas Gemming
Juergen Eckert
Mark H. Rümmeli
Publication date
21-09-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 2/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9440-z

Other articles of this Issue 2/2016

Journal of Materials Science 2/2016 Go to the issue

Premium Partners