Skip to main content
Top
Published in: International Journal of Computer Vision 3/2016

01-07-2016

Cyclic Schemes for PDE-Based Image Analysis

Authors: Joachim Weickert, Sven Grewenig, Christopher Schroers, Andrés Bruhn

Published in: International Journal of Computer Vision | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We investigate a class of efficient numerical algorithms for many partial differential equations (PDEs) in image analysis. They are applicable to parabolic or elliptic PDEs that have bounded coefficients and lead to space discretisations with symmetric matrices. Our schemes are easy to implement and well-suited for parallel implementations on GPUs, since they are based on the explicit diffusion scheme in the parabolic case, and the Jacobi method in the elliptic case. By supplementing these methods with cyclically varying time step sizes or relaxation parameters, we achieve efficiency gains of several orders of magnitude. We call the resulting algorithms Fast Explicit Diffusion (FED) and Fast Jacobi (FJ) methods. To achieve a good compromise between efficiency and accuracy, we show that one should use parameter cycles that result from factorisations of box filters. For these cycles we establish stability results in the Euclidean norm. Our schemes perform favourably in a number of applications, including isotropic nonlinear diffusion filters with widely varying diffusivities as well as anisotropic diffusion methods for image filtering, inpainting, and regularisation in computer vision. Moreover, they are equally suited for higher dimensional problems as well as higher order PDEs, and they can also be interpreted as efficient first order methods for smooth optimisation problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Taken from the Stanford 3-D scanning repository.
 
Literature
go back to reference Abramowitz, M., & Stegun, I. A. (Eds.). (1972). Orthogonal polynomials (Chapter 22). Handbook of mathematical functions with formulas, graphs, and mathematical tables (9th printing) (pp. 771–802). New York: Dover. Abramowitz, M., & Stegun, I. A. (Eds.). (1972). Orthogonal polynomials (Chapter 22). Handbook of mathematical functions with formulas, graphs, and mathematical tables (9th printing) (pp. 771–802). New York: Dover.
go back to reference Alcantarilla, P. F., & Bartoli, A. (2013). Fast explicit diffusion for accelerated features in nonlinear scale spaces. In T. Burghardt, D. Damen, W. Mayol-Cuevas, & M. Mirmehdi (Eds.), Proceedings of 2013 British Machine Vision Conference (pp. 13.1–13.11). Bristol: BMVA Press.CrossRef Alcantarilla, P. F., & Bartoli, A. (2013). Fast explicit diffusion for accelerated features in nonlinear scale spaces. In T. Burghardt, D. Damen, W. Mayol-Cuevas, & M. Mirmehdi (Eds.), Proceedings of 2013 British Machine Vision Conference (pp. 13.1–13.11). Bristol: BMVA Press.CrossRef
go back to reference Alexiades, V. (1995). Overcoming the stability restriction of explicit schemes via super-time-stepping. Proceedings of Dynamic Systems and Applications, Atlanta, Georgia, 2, 39–44.MathSciNetMATH Alexiades, V. (1995). Overcoming the stability restriction of explicit schemes via super-time-stepping. Proceedings of Dynamic Systems and Applications, Atlanta, Georgia, 2, 39–44.MathSciNetMATH
go back to reference Alexiades, V., Amiez, G., & Gremaud, P. A. (1996). Super-time-stepping acceleration of explicit schemes for parabolic problems. Communications in Numerical Methods in Engineering, 12, 31–42.CrossRefMATH Alexiades, V., Amiez, G., & Gremaud, P. A. (1996). Super-time-stepping acceleration of explicit schemes for parabolic problems. Communications in Numerical Methods in Engineering, 12, 31–42.CrossRefMATH
go back to reference Anderssen, R.S., & Golub, G. H. (1972). Richardson’s non-stationary matrix iterative procedure. Technical Report, STAN-CS-72-304, Computer Science Department, Stanford University. Anderssen, R.S., & Golub, G. H. (1972). Richardson’s non-stationary matrix iterative procedure. Technical Report, STAN-CS-72-304, Computer Science Department, Stanford University.
go back to reference Bänsch, E., & Mikula, K. (1997). A coarsening finite element strategy in image selective smoothing. Computation and Visualization in Science, 1, 53–61.CrossRefMATH Bänsch, E., & Mikula, K. (1997). A coarsening finite element strategy in image selective smoothing. Computation and Visualization in Science, 1, 53–61.CrossRefMATH
go back to reference Ben-Ari, R., Raveh, G. (2011). Variational depth from defocus in real-time. In Computer Vision Workshops, 2011 IEEE International Conference on Computer Vision (pp. 522–529). Ben-Ari, R., Raveh, G. (2011). Variational depth from defocus in real-time. In Computer Vision Workshops, 2011 IEEE International Conference on Computer Vision (pp. 522–529).
go back to reference Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge, UK: Cambridge University Press.CrossRefMATH Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge, UK: Cambridge University Press.CrossRefMATH
go back to reference Brakhage, H. (1960). Über die numerische Behandlung von Integralgleichungen nach der Quadraturformelmethode. Numerische Mathematik, 2, 183–196.MathSciNetCrossRefMATH Brakhage, H. (1960). Über die numerische Behandlung von Integralgleichungen nach der Quadraturformelmethode. Numerische Mathematik, 2, 183–196.MathSciNetCrossRefMATH
go back to reference Bruhn, A., Weickert, J., Kohlberger, T., & Schnörr, C. (2006). A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision, 70(3), 257–277.CrossRef Bruhn, A., Weickert, J., Kohlberger, T., & Schnörr, C. (2006). A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. International Journal of Computer Vision, 70(3), 257–277.CrossRef
go back to reference Calvetti, D., & Reichel, L. (1996). Adaptive Richardson iteration based on Leja points. Journal of Computational and Applied Mathematics, 71, 267–286.MathSciNetCrossRefMATH Calvetti, D., & Reichel, L. (1996). Adaptive Richardson iteration based on Leja points. Journal of Computational and Applied Mathematics, 71, 267–286.MathSciNetCrossRefMATH
go back to reference Catté, F., Lions, P. L., Morel, J. M., & Coll, T. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 32, 1895–1909.CrossRefMATH Catté, F., Lions, P. L., Morel, J. M., & Coll, T. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 32, 1895–1909.CrossRefMATH
go back to reference Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.MathSciNet Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.MathSciNet
go back to reference Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1), 120–145.MathSciNetCrossRefMATH Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1), 120–145.MathSciNetCrossRefMATH
go back to reference Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M. (1994). Two deterministic half-quadratic regularization algorithms for computed imaging. Proceedings of 1994 IEEE International Conference on Image Processing (Vol. 2, pp. 168–172). Austin: IEEE Computer Society Press. Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M. (1994). Two deterministic half-quadratic regularization algorithms for computed imaging. Proceedings of 1994 IEEE International Conference on Image Processing (Vol. 2, pp. 168–172). Austin: IEEE Computer Society Press.
go back to reference Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proceedings of the Cambridge Philosophical Society, 43, 50–67.MathSciNetCrossRefMATH Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proceedings of the Cambridge Philosophical Society, 43, 50–67.MathSciNetCrossRefMATH
go back to reference Drori, Y., & Teboulle, M. (2014). Performance of first-order methods for smooth convex minimization: A novel approach. Mathematical Programming, 145(1–2), 454–482.MathSciNetMATH Drori, Y., & Teboulle, M. (2014). Performance of first-order methods for smooth convex minimization: A novel approach. Mathematical Programming, 145(1–2), 454–482.MathSciNetMATH
go back to reference Fedorenko, R. P. (1962). A relaxation method for solving elliptic difference equations. USSR Computational Mathematics and Mathematical Physics, 1(4), 1092–1096.CrossRefMATH Fedorenko, R. P. (1962). A relaxation method for solving elliptic difference equations. USSR Computational Mathematics and Mathematical Physics, 1(4), 1092–1096.CrossRefMATH
go back to reference Frankel, S. (1950). Convergence rates of iterative treatments of partial differential equations. Mathematical Tables and Other Aids to Computation, 4, 65–75.MathSciNetCrossRef Frankel, S. (1950). Convergence rates of iterative treatments of partial differential equations. Mathematical Tables and Other Aids to Computation, 4, 65–75.MathSciNetCrossRef
go back to reference Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., & Seidel, H. P. (2008). Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision, 31(2–3), 255–269.MathSciNetMATH Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., & Seidel, H. P. (2008). Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision, 31(2–3), 255–269.MathSciNetMATH
go back to reference Gentzsch, W. (1979). Numerical solution of linear and non-linear parabolic differential equations by a time discretisation of third order accuracy. In E. H. Hirschel (Ed.), Proceedings of the Third GAMM-Conference on Numerical Methods in Fluid Mechanics. Brunswick: Friedr. Vieweg & Sohn. Gentzsch, W. (1979). Numerical solution of linear and non-linear parabolic differential equations by a time discretisation of third order accuracy. In E. H. Hirschel (Ed.), Proceedings of the Third GAMM-Conference on Numerical Methods in Fluid Mechanics. Brunswick: Friedr. Vieweg & Sohn.
go back to reference Gentzsch, W., & Schlüter, A. (1978). Über ein Einschrittverfahren mit zyklischer Schrittweitenänderung zur Lösung parabolischer Differentialgleichungen. Zeitschrift für Angewandte Mathematik und Mechanik, 58, T415–T416. (in German).MATH Gentzsch, W., & Schlüter, A. (1978). Über ein Einschrittverfahren mit zyklischer Schrittweitenänderung zur Lösung parabolischer Differentialgleichungen. Zeitschrift für Angewandte Mathematik und Mechanik, 58, T415–T416. (in German).MATH
go back to reference Gordeziani, D. G., & Meladze, G. V. (1974). Simulation of the third boundary value problem for multidimensional parabolic equations in an arbitrary domain by one-dimensional equations. USSR Computational Mathematics and Mathematical Physics, 14(1), 249–253.MathSciNetCrossRefMATH Gordeziani, D. G., & Meladze, G. V. (1974). Simulation of the third boundary value problem for multidimensional parabolic equations in an arbitrary domain by one-dimensional equations. USSR Computational Mathematics and Mathematical Physics, 14(1), 249–253.MathSciNetCrossRefMATH
go back to reference Grewenig, S., Weickert, J., & Bruhn, A. (2010). From box filtering to fast explicit diffusion. In M. Goesele, S. Roth, A. Kuijper, B. Schiele, & K. Schindler (Eds.), Pattern recognition (Vol. 6376, pp. 543–552)., Lecture Notes in Computer Science Berlin: Springer.CrossRef Grewenig, S., Weickert, J., & Bruhn, A. (2010). From box filtering to fast explicit diffusion. In M. Goesele, S. Roth, A. Kuijper, B. Schiele, & K. Schindler (Eds.), Pattern recognition (Vol. 6376, pp. 543–552)., Lecture Notes in Computer Science Berlin: Springer.CrossRef
go back to reference Gurski, K. F., O’Sullivan, S. (2010). An explicit super-time-stepping scheme for non-symmetric parabolic problems. In AIP Conference Proceedings: International Conference of Numerical Analysis and Applied Mathematics, Rhodes (Greece) (Vol. 1281, pp. 761–764). Gurski, K. F., O’Sullivan, S. (2010). An explicit super-time-stepping scheme for non-symmetric parabolic problems. In AIP Conference Proceedings: International Conference of Numerical Analysis and Applied Mathematics, Rhodes (Greece) (Vol. 1281, pp. 761–764).
go back to reference Gwosdek, P., Zimmer, H., Grewenig, S., Bruhn, A., & Weickert, J. (2012). A highly efficient GPU implementation for variational optic flow based on the Euler–Lagrange framework. In E. E. Kutulakos (Ed.), Trends and topics in computer vision (Vol. 6554, pp. 372–383)., Lecture Notes in Computer Science Berlin, Heidelberg: Springer.CrossRef Gwosdek, P., Zimmer, H., Grewenig, S., Bruhn, A., & Weickert, J. (2012). A highly efficient GPU implementation for variational optic flow based on the Euler–Lagrange framework. In E. E. Kutulakos (Ed.), Trends and topics in computer vision (Vol. 6554, pp. 372–383)., Lecture Notes in Computer Science Berlin, Heidelberg: Springer.CrossRef
go back to reference Hellwig, G. (1977). Partial differential equations. Stuttgart: Teubner.MATH Hellwig, G. (1977). Partial differential equations. Stuttgart: Teubner.MATH
go back to reference Hoffmann, S., Mainberger, M., Weickert, J., & Puhl, M. (2013). Compression of depth maps with segment-based homogeneous diffusion. In A. Kuijper, K. Bredies, T. Pock, & H. Bischof (Eds.), Scale space and variational methods in computer vision (Vol. 7893, pp. 319–330). Berlin: Springer.CrossRef Hoffmann, S., Mainberger, M., Weickert, J., & Puhl, M. (2013). Compression of depth maps with segment-based homogeneous diffusion. In A. Kuijper, K. Bredies, T. Pock, & H. Bischof (Eds.), Scale space and variational methods in computer vision (Vol. 7893, pp. 319–330). Berlin: Springer.CrossRef
go back to reference Jawerth, B., Lin, P., & Sinzinger, E. (1999). Lattice Boltzmann models for anisotropic diffusion of images. Journal of Mathematical Imaging and Vision, 11, 231–237.MathSciNetCrossRefMATH Jawerth, B., Lin, P., & Sinzinger, E. (1999). Lattice Boltzmann models for anisotropic diffusion of images. Journal of Mathematical Imaging and Vision, 11, 231–237.MathSciNetCrossRefMATH
go back to reference Krivá, Z., & Mikula, K. (2002). An adaptive finite volume scheme for solving nonlinear diffusion equations in image processing. Journal of Visual Communication and Image Representation, 13(1/2), 22–35.CrossRef Krivá, Z., & Mikula, K. (2002). An adaptive finite volume scheme for solving nonlinear diffusion equations in image processing. Journal of Visual Communication and Image Representation, 13(1/2), 22–35.CrossRef
go back to reference Lebedev, V. I., & Finogenov, V. N. (1971). Ordering the iteration parameters in the cyclic Chebychev iterative method. USSR Computational Mathematics and Mathematical Physics, 11(2), 155–170.MathSciNetCrossRefMATH Lebedev, V. I., & Finogenov, V. N. (1971). Ordering the iteration parameters in the cyclic Chebychev iterative method. USSR Computational Mathematics and Mathematical Physics, 11(2), 155–170.MathSciNetCrossRefMATH
go back to reference Lu, T., Neittaanmäki, P., & Tai, X. C. (1991). A parallel splitting up method and its application to Navier–Stokes equations. Applied Mathematics Letters, 4(2), 25–29. Lu, T., Neittaanmäki, P., & Tai, X. C. (1991). A parallel splitting up method and its application to Navier–Stokes equations. Applied Mathematics Letters, 4(2), 25–29.
go back to reference Luxenburger, A., Zimmer, H., Gwosdek, P., & Weickert, J. (2011). Fast PDE-based image analysis in your pocket. In A. M. Bruckstein, B. ter Haar Romeny, A. M. Bronstein, & M. M. Bronstein (Eds.), Scale Space and Variational Methods in Computer Vision (Vol. 6667, pp. 544–555)., Lecture Notes in Computer Science Berlin: Springer.CrossRef Luxenburger, A., Zimmer, H., Gwosdek, P., & Weickert, J. (2011). Fast PDE-based image analysis in your pocket. In A. M. Bruckstein, B. ter Haar Romeny, A. M. Bronstein, & M. M. Bronstein (Eds.), Scale Space and Variational Methods in Computer Vision (Vol. 6667, pp. 544–555)., Lecture Notes in Computer Science Berlin: Springer.CrossRef
go back to reference Mang, A., Schuetz, T. A., Becker, S., Toma, A., & Buzug, T. M. (2012). Cyclic numerical time integration in variational non-rigid image registration based on quadratic regularisation. In Proceedings of Vision, Modeling, and Visualization (2012). Eurographics Digital Library (pp. 143–150). Germany: Magdeburg. Mang, A., Schuetz, T. A., Becker, S., Toma, A., & Buzug, T. M. (2012). Cyclic numerical time integration in variational non-rigid image registration based on quadratic regularisation. In Proceedings of Vision, Modeling, and Visualization (2012). Eurographics Digital Library (pp. 143–150). Germany: Magdeburg.
go back to reference Meijerink, J. A., & van der Vorst, H. A. (1977). An iterative solution method for linear systems of which the coefficient matrix is a symmetric \(M\)-matrix. Mathematics of Computation, 31(137), 148–162.MathSciNetMATH Meijerink, J. A., & van der Vorst, H. A. (1977). An iterative solution method for linear systems of which the coefficient matrix is a symmetric \(M\)-matrix. Mathematics of Computation, 31(137), 148–162.MathSciNetMATH
go back to reference Nesterov, Y. (2004). Introductory lectures on convex optimization: A basic course, applied optimization (Vol. 87). Boston: Kluwer.MATH Nesterov, Y. (2004). Introductory lectures on convex optimization: A basic course, applied optimization (Vol. 87). Boston: Kluwer.MATH
go back to reference Nocedal, J., & Wright, S. J. (2006). Numerical optimization. New York: Springer.MATH Nocedal, J., & Wright, S. J. (2006). Numerical optimization. New York: Springer.MATH
go back to reference Ochs, P., Brox, T., & Pock, T. (2015). iPiasco: Inertial proximal algorithm for strongly convex optimization. Journal of Mathematical Imaging and Vision, 53(2), 171–181.MathSciNetCrossRefMATH Ochs, P., Brox, T., & Pock, T. (2015). iPiasco: Inertial proximal algorithm for strongly convex optimization. Journal of Mathematical Imaging and Vision, 53(2), 171–181.MathSciNetCrossRefMATH
go back to reference Opfer, G., & Schober, G. (1984). Richardson’s iteration for nonsymmetric matrices. Linear Algebra and its Applications, 58, 343–361.MathSciNetCrossRefMATH Opfer, G., & Schober, G. (1984). Richardson’s iteration for nonsymmetric matrices. Linear Algebra and its Applications, 58, 343–361.MathSciNetCrossRefMATH
go back to reference Peaceman, D. W., & Rachford, H. H, Jr. (1955). The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics, 3(1), 28–41.MathSciNetCrossRefMATH Peaceman, D. W., & Rachford, H. H, Jr. (1955). The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics, 3(1), 28–41.MathSciNetCrossRefMATH
go back to reference Perona, P., & Malik, J. (1990). Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.CrossRef Perona, P., & Malik, J. (1990). Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.CrossRef
go back to reference Peter, P. (2013). Three-dimensional data compression with anisotropic diffusion. In J. Weickert, M. Hein, & B. Schiele (Eds.), Pattern recognition (Vol. 8142, pp. 231–236)., Lecture Notes in Computer Science Berlin: Springer.CrossRef Peter, P. (2013). Three-dimensional data compression with anisotropic diffusion. In J. Weickert, M. Hein, & B. Schiele (Eds.), Pattern recognition (Vol. 8142, pp. 231–236)., Lecture Notes in Computer Science Berlin: Springer.CrossRef
go back to reference Pock, T., Chambolle, A. (2011). Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In Proceedings 13th International Conference on Computer Vision, Barcelona (pp. 1762–1769). Pock, T., Chambolle, A. (2011). Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In Proceedings 13th International Conference on Computer Vision, Barcelona (pp. 1762–1769).
go back to reference Rakêt, L. L., & Markussen, B. (2014). Approximate inference for spatial functional data on massively parallel processors. Computational Statistics and Data Analysis, 72, 1723–1730.MathSciNetCrossRef Rakêt, L. L., & Markussen, B. (2014). Approximate inference for spatial functional data on massively parallel processors. Computational Statistics and Data Analysis, 72, 1723–1730.MathSciNetCrossRef
go back to reference Richardson, L. F. (1910). The approximate arithmetical solution by finite differences of physical problems involving differential equation, with an application to the stresses in a masonry dam. Transactions of the Royal Society of London Series, A(210), 307–357. Richardson, L. F. (1910). The approximate arithmetical solution by finite differences of physical problems involving differential equation, with an application to the stresses in a masonry dam. Transactions of the Royal Society of London Series, A(210), 307–357.
go back to reference Rosman, G., Dascal, L., Sidi, A., & Kimmel, R. (2009). Efficient Beltrami image filtering via vector extrapolation methods. SIAM Journal on Imaging Sciences, 2(3), 858–878.MathSciNetCrossRefMATH Rosman, G., Dascal, L., Sidi, A., & Kimmel, R. (2009). Efficient Beltrami image filtering via vector extrapolation methods. SIAM Journal on Imaging Sciences, 2(3), 858–878.MathSciNetCrossRefMATH
go back to reference Saad, Y. (2003). Iterative Methods for Sparse Linear Systems (2nd ed.). Philadelphia: SIAM. Saad, Y. (2003). Iterative Methods for Sparse Linear Systems (2nd ed.). Philadelphia: SIAM.
go back to reference Saul’yev, V. K. (1964). Integration of equations of parabolic type by the method of nets. Oxford: Pergamon.MATH Saul’yev, V. K. (1964). Integration of equations of parabolic type by the method of nets. Oxford: Pergamon.MATH
go back to reference Schmidt-Richberg, A., Ehrhardt, J., Werner, R., & Handels, H. (2012). Fast explicit diffusion for registration with direction-dependent regularization. In B. M. Dawant, G. E. Christensen, J. M. Fitzpatrick, & D. Rueckert (Eds.), Biomedical image registration (Vol. 7359, pp. 220–228)., Lecture Notes in Computer Science Berlin, Heidelberg: Springer.CrossRef Schmidt-Richberg, A., Ehrhardt, J., Werner, R., & Handels, H. (2012). Fast explicit diffusion for registration with direction-dependent regularization. In B. M. Dawant, G. E. Christensen, J. M. Fitzpatrick, & D. Rueckert (Eds.), Biomedical image registration (Vol. 7359, pp. 220–228)., Lecture Notes in Computer Science Berlin, Heidelberg: Springer.CrossRef
go back to reference Schroers, C., Zimmer, H., Valgaerts, L., Bruhn, A., Demetz, O., & Weickert, J. (2012). Anisotropic range image integration. In A. Prinz, T. Pock, H. Bischof, & F. Leberl (Eds.), Pattern recognition (Vol. 7476, pp. 73–82)., Lecture Notes in Computer Science Berlin: Springer.CrossRef Schroers, C., Zimmer, H., Valgaerts, L., Bruhn, A., Demetz, O., & Weickert, J. (2012). Anisotropic range image integration. In A. Prinz, T. Pock, H. Bischof, & F. Leberl (Eds.), Pattern recognition (Vol. 7476, pp. 73–82)., Lecture Notes in Computer Science Berlin: Springer.CrossRef
go back to reference Setzer, S., Steidl, G., & Morgenthaler, J. (2013). On cyclic gradient descent reprojection. Computational Optimization and Applications, 54(2), 417–440.MathSciNetCrossRefMATH Setzer, S., Steidl, G., & Morgenthaler, J. (2013). On cyclic gradient descent reprojection. Computational Optimization and Applications, 54(2), 417–440.MathSciNetCrossRefMATH
go back to reference Spira, A., Kimmel, R., & Sochen, N. (2007). A short-time Beltrami kernel for smoothing images and manifolds. IEEE Transactions on Image Processing, 16(3), 1628–1636.MathSciNetCrossRef Spira, A., Kimmel, R., & Sochen, N. (2007). A short-time Beltrami kernel for smoothing images and manifolds. IEEE Transactions on Image Processing, 16(3), 1628–1636.MathSciNetCrossRef
go back to reference Varga, R. S. (1962). Matrix Iterative Analysis. Englewood Cliffs: Prentice Hall. Varga, R. S. (1962). Matrix Iterative Analysis. Englewood Cliffs: Prentice Hall.
go back to reference Weickert, J. (1998). Anisotropic diffusion in image processing. Stuttgart: Teubner.MATH Weickert, J. (1998). Anisotropic diffusion in image processing. Stuttgart: Teubner.MATH
go back to reference Weickert, J. (1999). Coherence-enhancing diffusion filtering. International Journal of Computer Vision, 31(2/3), 111–127.CrossRef Weickert, J. (1999). Coherence-enhancing diffusion filtering. International Journal of Computer Vision, 31(2/3), 111–127.CrossRef
go back to reference Weickert, J. (2001). Applications of nonlinear diffusion in image processing and computer vision. Acta Mathematica Universitatis Comenianae, 70(1), 33–50.MathSciNetMATH Weickert, J. (2001). Applications of nonlinear diffusion in image processing and computer vision. Acta Mathematica Universitatis Comenianae, 70(1), 33–50.MathSciNetMATH
go back to reference Weickert, J., ter Haar Romeny, B. M., & Viergever, M. A. (1998). Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 7(3), 398–410.CrossRef Weickert, J., ter Haar Romeny, B. M., & Viergever, M. A. (1998). Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 7(3), 398–410.CrossRef
go back to reference Weickert, J., Hagenburg, K., Breuß, M., & Vogel, O. (2013). Lecture Notes in Computer Science. Energy minimisation methods in computer vision and pattern recognition (Vol. 8081, pp. 29–39). Berlin: Springer. Weickert, J., Hagenburg, K., Breuß, M., & Vogel, O. (2013). Lecture Notes in Computer Science. Energy minimisation methods in computer vision and pattern recognition (Vol. 8081, pp. 29–39). Berlin: Springer.
go back to reference Welk, M., Steidl, G., & Weickert, J. (2008). Locally analytic schemes: A link between diffusion filtering and wavelet shrinkage. Applied and Computational Harmonic Analysis, 24, 195–224.MathSciNetCrossRefMATH Welk, M., Steidl, G., & Weickert, J. (2008). Locally analytic schemes: A link between diffusion filtering and wavelet shrinkage. Applied and Computational Harmonic Analysis, 24, 195–224.MathSciNetCrossRefMATH
go back to reference Wells, W. M. (1986). Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 234–239.CrossRef Wells, W. M. (1986). Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 234–239.CrossRef
go back to reference Young, D. (1954). On Richardson’s method for solving linear systems with positive definite matrices. Journal of Mathematics and Physics, 32, 243–255.CrossRefMATH Young, D. (1954). On Richardson’s method for solving linear systems with positive definite matrices. Journal of Mathematics and Physics, 32, 243–255.CrossRefMATH
go back to reference Young, D. M. (1950) Iterative methods for solving partial difference equations of elliptic type. PhD Thesis, Department of Mathematics, Harvard University, Cambridge, MA. Young, D. M. (1950) Iterative methods for solving partial difference equations of elliptic type. PhD Thesis, Department of Mathematics, Harvard University, Cambridge, MA.
go back to reference Yuan’Chzhao-Din (1958). Some difference schemes for the solution of the first boundary value problem for linear differential equations with partial derivatives. PhD Thesis, Moscow State University (in Russian). Yuan’Chzhao-Din (1958). Some difference schemes for the solution of the first boundary value problem for linear differential equations with partial derivatives. PhD Thesis, Moscow State University (in Russian).
Metadata
Title
Cyclic Schemes for PDE-Based Image Analysis
Authors
Joachim Weickert
Sven Grewenig
Christopher Schroers
Andrés Bruhn
Publication date
01-07-2016
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 3/2016
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-015-0874-1

Other articles of this Issue 3/2016

International Journal of Computer Vision 3/2016 Go to the issue

Premium Partner