Skip to main content
Top
Published in: Topics in Catalysis 15-16/2017

12-04-2017 | Original Paper

Deactivation of CuZn Catalysts Used in Glycerol Hydrogenolysis to Obtain 1,2-Propanediol

Authors: D. Durán-Martín, M. López Granados, J. L. G. Fierro, C. Pinel, R. Mariscal

Published in: Topics in Catalysis | Issue 15-16/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Different CuZn catalysts were prepared by coprecipitation method with Cu/Zn atomic ratio of 0.2, 0.4, 1.0, 2.5 and 6.0. Monometallic Zn and Cu catalysts and a bimetallic catalyst (Cu/Zn = 2.5) prepared by physical mixture of the precursors were also studied. These catalysts were tested in the glycerol hydrogenolysis reaction and the higher yields to 1,2-propanediol were achieved for Cu/Zn atomic ratio ≥ 1 samples. The deactivation of a representative catalyst (Cu/Zn = 1) was evaluated and its yield to 1,2 propanediol decreases until ca 40% after five runs. To explain this behavior, fresh and used catalysts were characterized by different techniques. Chemical analysis of solid catalysts and liquid reaction medium confirmed the leaching of Zn species under our reaction conditions. This process promotes Cu sintering which is proposed as the actual reason of the observed deactivation in the glycerol hydrogenolysis for this catalytic system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bauer F, Hulteberg C (2013) Is there a future in glycerol as a feedstock in the production of biofuels and biochemicals? Biofuels Bioprod Biorefin 7:43–51CrossRef Bauer F, Hulteberg C (2013) Is there a future in glycerol as a feedstock in the production of biofuels and biochemicals? Biofuels Bioprod Biorefin 7:43–51CrossRef
2.
go back to reference Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Tech 1:179–190CrossRef Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Tech 1:179–190CrossRef
3.
go back to reference Nanda MR, Yuan Z, Qin W, Xu C (2016) Recent advancements in catalytic conversion of glycerol into propylene glycol: a review. Catal Rev Sci Eng 58:309–336CrossRef Nanda MR, Yuan Z, Qin W, Xu C (2016) Recent advancements in catalytic conversion of glycerol into propylene glycol: a review. Catal Rev Sci Eng 58:309–336CrossRef
4.
go back to reference Vasiliadou ES, Lemonidou AA (2015) Glycerol transformation to value added C3 diols: reaction mechanism, kinetic, and engineering aspects. Wiley Interdisc Rev Energy Environ 4:486–520 Vasiliadou ES, Lemonidou AA (2015) Glycerol transformation to value added C3 diols: reaction mechanism, kinetic, and engineering aspects. Wiley Interdisc Rev Energy Environ 4:486–520
5.
go back to reference Marinas A, Bruijnincx P, Ftouni J, Urbano FJ, Pinel C (2014) Sustainability metrics for a fossil- and renewable-based route for 1,2-propanediol production: a comparison. Catal Today 239:31–37CrossRef Marinas A, Bruijnincx P, Ftouni J, Urbano FJ, Pinel C (2014) Sustainability metrics for a fossil- and renewable-based route for 1,2-propanediol production: a comparison. Catal Today 239:31–37CrossRef
6.
go back to reference Chaminand J, Djakovitch LA, Gallezot P, Marion P, Pinel C, Rosier C (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6:359–361CrossRef Chaminand J, Djakovitch LA, Gallezot P, Marion P, Pinel C, Rosier C (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6:359–361CrossRef
7.
go back to reference Bienholz A, Hofmann H, Claus P (2011) Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: correlation between the copper surface area and the catalyst’s activity. App Catal A Gen 391:153–157CrossRef Bienholz A, Hofmann H, Claus P (2011) Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: correlation between the copper surface area and the catalyst’s activity. App Catal A Gen 391:153–157CrossRef
8.
go back to reference Huang Z, Cui F, Xue J, Zuo J, Chen J, Xia C (2012) Cu/SiO2 catalysts prepared by hom- and heterogeneous deposition-precipitation methods: texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1,2-propanediol. Catal Today 183:42–51CrossRef Huang Z, Cui F, Xue J, Zuo J, Chen J, Xia C (2012) Cu/SiO2 catalysts prepared by hom- and heterogeneous deposition-precipitation methods: texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1,2-propanediol. Catal Today 183:42–51CrossRef
9.
go back to reference Sato S, Akiyama M, Inui K, Yokota M (2009) Selective conversion of glycerol into 1,2-propanediol at ambient hydrogen pressure. Chem Lett 38:560–561CrossRef Sato S, Akiyama M, Inui K, Yokota M (2009) Selective conversion of glycerol into 1,2-propanediol at ambient hydrogen pressure. Chem Lett 38:560–561CrossRef
10.
go back to reference Vila F, Granados ML, Ojeda M, Fierro JLG, Mariscal R (2012) Glycerol hydrogenolysis to 1,2-propanediol with Cu/γ-Al2O3: effect of the activation process. Catal Today 187:122–128CrossRef Vila F, Granados ML, Ojeda M, Fierro JLG, Mariscal R (2012) Glycerol hydrogenolysis to 1,2-propanediol with Cu/γ-Al2O3: effect of the activation process. Catal Today 187:122–128CrossRef
11.
go back to reference Durán-Martín D, Ojeda M, Granados ML, Fierro JLG, Mariscal R (2013) Stability and regeneration of Cu-ZrO2 catalysts used in glycerol hydrogenolysis to 1,2-propanediol. Catal Today 210:98–105CrossRef Durán-Martín D, Ojeda M, Granados ML, Fierro JLG, Mariscal R (2013) Stability and regeneration of Cu-ZrO2 catalysts used in glycerol hydrogenolysis to 1,2-propanediol. Catal Today 210:98–105CrossRef
12.
go back to reference Soares AVH, Salazar JB, Falcone DD, Vasconcellos FA, Davis RJ, Passos FB (2016) A study of glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. J Mol Catal A Chem 415:27–36CrossRef Soares AVH, Salazar JB, Falcone DD, Vasconcellos FA, Davis RJ, Passos FB (2016) A study of glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. J Mol Catal A Chem 415:27–36CrossRef
13.
go back to reference Zheng L, Li X, Du W, Shi D, Ning W, Lu X, Hou Z (2017) Metal-organic framework derived Cu/ZnO catalysts for continuous hydrogenolysis of glycerol. Appl Catal B Environ 203:146–153CrossRef Zheng L, Li X, Du W, Shi D, Ning W, Lu X, Hou Z (2017) Metal-organic framework derived Cu/ZnO catalysts for continuous hydrogenolysis of glycerol. Appl Catal B Environ 203:146–153CrossRef
14.
go back to reference Wang C, Jiang H, Chen C, Chen R, Xing W (2015) Solvent effect on hydrogenolysis of glycerol to 1,2-propanediol over Cu–ZnO catalyst. Chem Eng J 264:344–350CrossRef Wang C, Jiang H, Chen C, Chen R, Xing W (2015) Solvent effect on hydrogenolysis of glycerol to 1,2-propanediol over Cu–ZnO catalyst. Chem Eng J 264:344–350CrossRef
15.
go back to reference Liu Y, Pasupulety N, Gunda K, Rempel GL, Ng FTT (2014) Glycerol Hydrogenolysis to 1,2-Propanediol by Cu/ZnO/Al2O3 Catalysts. Top Catal 57:1454–1462CrossRef Liu Y, Pasupulety N, Gunda K, Rempel GL, Ng FTT (2014) Glycerol Hydrogenolysis to 1,2-Propanediol by Cu/ZnO/Al2O3 Catalysts. Top Catal 57:1454–1462CrossRef
16.
go back to reference Feng Y, Yin H, Wang A, Shen L, Yu L, Jiang T (2011) Gas phase hydrogenolysis of glycerol catalyzed by Cu/ZnO/MOx (MOx = Al2O3, TiO2, and ZrO2) catalysts. Chem Eng J 168:403–412CrossRef Feng Y, Yin H, Wang A, Shen L, Yu L, Jiang T (2011) Gas phase hydrogenolysis of glycerol catalyzed by Cu/ZnO/MOx (MOx = Al2O3, TiO2, and ZrO2) catalysts. Chem Eng J 168:403–412CrossRef
17.
go back to reference Wang S, Zhang Y, Liu H (2010) Selective hydrogenolysis of glycerol to propylene glycol on Cu–Zno composite catalysts: structural requirements and reaction mechanism. Chem Asian J 5:1100–1111CrossRef Wang S, Zhang Y, Liu H (2010) Selective hydrogenolysis of glycerol to propylene glycol on Cu–Zno composite catalysts: structural requirements and reaction mechanism. Chem Asian J 5:1100–1111CrossRef
18.
go back to reference Bienholz A, Schwab F, Claus P (2010) Hydrogenolysis of glycerol over a highly active CuO/ZnO catalyst prepared by an oxalate gel method: influence of solvent and reaction temperature on catalyst deactivation. Green Chem 12:290–295CrossRef Bienholz A, Schwab F, Claus P (2010) Hydrogenolysis of glycerol over a highly active CuO/ZnO catalyst prepared by an oxalate gel method: influence of solvent and reaction temperature on catalyst deactivation. Green Chem 12:290–295CrossRef
19.
go back to reference Balaraju M, Rekha V, Sai Prasad PS, Prasad RBN, Lingaiah N (2008) Selective hydrogenolysis of glycerol to 1,2 propanediol over Cu–ZnO catalysts. Catal Lett 126:119–124CrossRef Balaraju M, Rekha V, Sai Prasad PS, Prasad RBN, Lingaiah N (2008) Selective hydrogenolysis of glycerol to 1,2 propanediol over Cu–ZnO catalysts. Catal Lett 126:119–124CrossRef
20.
go back to reference Wang S, Liu H (2007) Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts. Catal Lett 117:62–67CrossRef Wang S, Liu H (2007) Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts. Catal Lett 117:62–67CrossRef
21.
go back to reference Niu L, Wei R, Li C, Gao L, Zhou M, Jiang F, Xiao G (2015) Cu/ZnO-USY: an efficient bifunctional catalyst for the hydrogenolysis of glycerol. React Kinet Mech Catal 115:377–388CrossRef Niu L, Wei R, Li C, Gao L, Zhou M, Jiang F, Xiao G (2015) Cu/ZnO-USY: an efficient bifunctional catalyst for the hydrogenolysis of glycerol. React Kinet Mech Catal 115:377–388CrossRef
22.
go back to reference Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schlögl R (2003) Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. Chem Eur J 9(9):2039–2052CrossRef Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schlögl R (2003) Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. Chem Eur J 9(9):2039–2052CrossRef
23.
go back to reference Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RH, Gale LH (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal 3:211–225CrossRef Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RH, Gale LH (1981) Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal 3:211–225CrossRef
24.
go back to reference Feng J, Xu B (2014) Reaction mechanisms for the heterogeneous hydrogenolysis of biomass-derived glycerol to propanediols. Prog React Kinet Mech 39:1–15CrossRef Feng J, Xu B (2014) Reaction mechanisms for the heterogeneous hydrogenolysis of biomass-derived glycerol to propanediols. Prog React Kinet Mech 39:1–15CrossRef
25.
go back to reference Maris EP, Davis RJ (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J Catal 249:328–337CrossRef Maris EP, Davis RJ (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J Catal 249:328–337CrossRef
26.
go back to reference Marques FL, Oliveira AC, Filho JM, Rodríguez-Castellón E, Cavalcante CL, Vieira RS (2015) Synthesis of lactic acid from glycerol using a Pd/C catalyst. Fuel Process Technol 138:228–235CrossRef Marques FL, Oliveira AC, Filho JM, Rodríguez-Castellón E, Cavalcante CL, Vieira RS (2015) Synthesis of lactic acid from glycerol using a Pd/C catalyst. Fuel Process Technol 138:228–235CrossRef
27.
go back to reference Ressler T, Kniep BL, Kasatkin I, Schlögl R (2005) The microstructure of copper zinc oxide catalysts: bridging the materials gap. Angew Chem Int Ed 44:4704–4707CrossRef Ressler T, Kniep BL, Kasatkin I, Schlögl R (2005) The microstructure of copper zinc oxide catalysts: bridging the materials gap. Angew Chem Int Ed 44:4704–4707CrossRef
28.
go back to reference Wagner JB, Hansen PL, Molenbroek AM, Topsøe H, Clausen BS, Helveg S (2003) In situ electron energy loss spectroscopy studies of gas-dependent metal-support interactions in Cu/ZnO catalysts. J Phys Chem B 107:7753–7758CrossRef Wagner JB, Hansen PL, Molenbroek AM, Topsøe H, Clausen BS, Helveg S (2003) In situ electron energy loss spectroscopy studies of gas-dependent metal-support interactions in Cu/ZnO catalysts. J Phys Chem B 107:7753–7758CrossRef
29.
go back to reference Frost DC, Ishitani A, McDowell CA (1972) X-ray photoelectron spectroscopy of copper compounds. Mol Phys 24:861–877CrossRef Frost DC, Ishitani A, McDowell CA (1972) X-ray photoelectron spectroscopy of copper compounds. Mol Phys 24:861–877CrossRef
30.
go back to reference Cecilia JA, Arango-Díaz A, Rico-Pérez V, Bueno-López A, Rodríguez-Castellón E (2015) The influence of promoters (Zr, La, Tb, Pr) on the catalytic performance of CuO–CeO2 systems for the preferential oxidation of CO in the presence of CO2 and H2O. Catal Today 253:115–125CrossRef Cecilia JA, Arango-Díaz A, Rico-Pérez V, Bueno-López A, Rodríguez-Castellón E (2015) The influence of promoters (Zr, La, Tb, Pr) on the catalytic performance of CuO–CeO2 systems for the preferential oxidation of CO in the presence of CO2 and H2O. Catal Today 253:115–125CrossRef
31.
go back to reference Moretti G, Fierro G, Lo Jacono M, Porta P (1989) Characterization of CuO–ZnO catalysts by X-ray photoelectron spectroscopy: precursors, calcined and reduced samples. Surf Interface Anal 14:325–336CrossRef Moretti G, Fierro G, Lo Jacono M, Porta P (1989) Characterization of CuO–ZnO catalysts by X-ray photoelectron spectroscopy: precursors, calcined and reduced samples. Surf Interface Anal 14:325–336CrossRef
32.
go back to reference Blanc B, Bourrel A, Gallezot P, Haas T, Taylor P (2000) Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts. Green Chem 2:89–91CrossRef Blanc B, Bourrel A, Gallezot P, Haas T, Taylor P (2000) Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts. Green Chem 2:89–91CrossRef
33.
go back to reference Fedje KK, Ekberg C, Skarnemark G, Steenari BM (2010) Removal of hazardous metals from MSW fly ash—An evaluation of ash leaching methods. J Hazard Mater 173(1–3):310–317CrossRef Fedje KK, Ekberg C, Skarnemark G, Steenari BM (2010) Removal of hazardous metals from MSW fly ash—An evaluation of ash leaching methods. J Hazard Mater 173(1–3):310–317CrossRef
34.
go back to reference Singh KD, Jain SC, Sakore TD, Biswas AB (1975) The crystal and molecular structure of zinc lactate trihydrate. Acta Crystallogr B 31(4):990–993CrossRef Singh KD, Jain SC, Sakore TD, Biswas AB (1975) The crystal and molecular structure of zinc lactate trihydrate. Acta Crystallogr B 31(4):990–993CrossRef
35.
go back to reference Twigg MV, Spencer MS (2001) Deactivation of supported copper metal catalysts for hydrogenation reactions. Appl Catal A 212:161–174CrossRef Twigg MV, Spencer MS (2001) Deactivation of supported copper metal catalysts for hydrogenation reactions. Appl Catal A 212:161–174CrossRef
Metadata
Title
Deactivation of CuZn Catalysts Used in Glycerol Hydrogenolysis to Obtain 1,2-Propanediol
Authors
D. Durán-Martín
M. López Granados
J. L. G. Fierro
C. Pinel
R. Mariscal
Publication date
12-04-2017
Publisher
Springer US
Published in
Topics in Catalysis / Issue 15-16/2017
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-017-0807-z

Other articles of this Issue 15-16/2017

Topics in Catalysis 15-16/2017 Go to the issue

Premium Partners