Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 4/2018

03-08-2018 | Original Article

Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation

Authors: Janosch Bär, Thanaphong Phongpreecha, Sandip Kumar Singh, Melisa Kral Yilmaz, Cliff E. Foster, Jacob D. Crowe, David B. Hodge

Published in: Biomass Conversion and Biorefinery | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Acidic ethanol organosolv fractionation of hybrid poplar was investigated to determine the impact of pretreatment conditions on the resulting biomass and lignin properties and to assess the subsequent deconstruction of the cell wall biopolymers to monomeric sugars and aromatics. It was found that increasing reaction severity (i.e., time and temperature) during the organosolv fractionation increased the rate of delignification and xylan solubilization while the lignins recovered from the liquors were found to exhibit lower degrees of polymerization. Glucose hydrolysis yields > 75% at moderate enzyme loadings (30 mg/g glucan) could be obtained for the more severe pretreatment conditions. The lignins recovered from the pretreatment liquors were subjected to fractionation using a sequential extraction with solvents of increasing polarity. It was found that the low molar mass, low polydispersity lignins increased in pretreatment liquors with increasing time and temperature and were concentrated in the methanol fraction while a high molar mass fraction was extracted with the diethyl ether. We hypothesize that the extraction of the high molar mass fraction with diethyl ether is due to partial ethyl O-alkylation of lignin hydroxyl groups during pretreatment, rendering lignins more soluble in the non-polar solvent. Finally, depolymerization of unfractionated lignins by thioacidolysis resulted in mass yields of aromatic monomers ranging from 80 to 157 mg monomer per gram of lignin and that these yields exhibited strong positive correlations to the lignin β-O-4 content, molar mass, and strong negative correlations to the pretreatment temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Laure S (2014) Assessment of an organosolv lignocellulose biorefinery concept based on a material flow analysis of a pilot plant. Cellul Chem Technol 48(9–10):793–798 Laure S (2014) Assessment of an organosolv lignocellulose biorefinery concept based on a material flow analysis of a pilot plant. Cellul Chem Technol 48(9–10):793–798
2.
go back to reference Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRef
3.
go back to reference Zakzeski J, Jongerius AL, Bruijnincx PC, Weckhuysen BM (2012) Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. ChemSusChem 5(8):1602–1609CrossRef Zakzeski J, Jongerius AL, Bruijnincx PC, Weckhuysen BM (2012) Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. ChemSusChem 5(8):1602–1609CrossRef
5.
go back to reference Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. BioFPR 4:209–226 Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. BioFPR 4:209–226
6.
go back to reference Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRef Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRef
7.
go back to reference Stockburger P (1993) An overview of near-commercial and commercial solvent-based pulping processes. TAPPI J 76(6):71–74 Stockburger P (1993) An overview of near-commercial and commercial solvent-based pulping processes. TAPPI J 76(6):71–74
8.
go back to reference Aronovsky S, Gortner RA (1936) The cooking process IX. Pulping wood alcohols and other organic reagents. Ind Eng Chem 28(11):1270–1276CrossRef Aronovsky S, Gortner RA (1936) The cooking process IX. Pulping wood alcohols and other organic reagents. Ind Eng Chem 28(11):1270–1276CrossRef
9.
go back to reference Rodríguez A, Jiménez L (2008) Pulping with organic solvents other than alcohols. Acetone Amines Afinidad 65(535):188–196 Rodríguez A, Jiménez L (2008) Pulping with organic solvents other than alcohols. Acetone Amines Afinidad 65(535):188–196
10.
go back to reference Hergert H, Pye E. Recent history of organosolv pulping. In: APPI Solvent Pulping Symposium, 1992. pp 9–26 Hergert H, Pye E. Recent history of organosolv pulping. In: APPI Solvent Pulping Symposium, 1992. pp 9–26
11.
go back to reference Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827CrossRef Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815–827CrossRef
12.
go back to reference Kim D, Pan X (2010) Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Ind Eng Chem Res 49(23):12156–12163CrossRef Kim D, Pan X (2010) Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Ind Eng Chem Res 49(23):12156–12163CrossRef
13.
go back to reference Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861. https://doi.org/10.1002/bit.20905 CrossRef Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861. https://​doi.​org/​10.​1002/​bit.​20905 CrossRef
14.
go back to reference Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 123(1–3):871–882CrossRef Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 123(1–3):871–882CrossRef
15.
go back to reference Pye EK, Lora JH (1991) The Alcell™ process: a proven alternative to Kraft pulping. TAPPI J 74(3):113–118 Pye EK, Lora JH (1991) The Alcell™ process: a proven alternative to Kraft pulping. TAPPI J 74(3):113–118
16.
go back to reference Patt R, Kordsachia O, Knoblauch J, The ASAM process—alkaline sulfite, anthraquinone, methanol pulping. In: fourth international symposium on wood and pulping chemistry, Paris, France, 1987. pp 355–360 Patt R, Kordsachia O, Knoblauch J, The ASAM process—alkaline sulfite, anthraquinone, methanol pulping. In: fourth international symposium on wood and pulping chemistry, Paris, France, 1987. pp 355–360
17.
go back to reference Nimz H, Granzow C, Berg A (1986) Acetosolv pulping. Holz Roh Werks 44(9):362–362CrossRef Nimz H, Granzow C, Berg A (1986) Acetosolv pulping. Holz Roh Werks 44(9):362–362CrossRef
18.
go back to reference Saake B, Lehnen R, Lummitsch S, Nimz H Production of dissolving and paper grade pulps by the Formacell process. In: 8th International Symposium on Wood and Pulping Chemistry, Book, 1995. pp 237–242 Saake B, Lehnen R, Lummitsch S, Nimz H Production of dissolving and paper grade pulps by the Formacell process. In: 8th International Symposium on Wood and Pulping Chemistry, Book, 1995. pp 237–242
19.
go back to reference Sundquist J, Poppius-Levlin K (1998) Milox pulping and bleaching. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. John Wiley and Sons, New York, pp 157–190 Sundquist J, Poppius-Levlin K (1998) Milox pulping and bleaching. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. John Wiley and Sons, New York, pp 157–190
20.
go back to reference Kleinert TN (1971) Organosolv pulping and recovery process. US Patent 3,535,194 Kleinert TN (1971) Organosolv pulping and recovery process. US Patent 3,535,194
21.
go back to reference Katahira R, Mittal A, McKinney K, Ciesielski PN, Donohoe BS, Black SK, Johnson DK, Biddy MJ, Beckham GT (2014) Evaluation of clean fractionation pretreatment for the production of renewable fuels and chemicals from corn stover. ACS Sus Chem Eng 2(6):1364–1376CrossRef Katahira R, Mittal A, McKinney K, Ciesielski PN, Donohoe BS, Black SK, Johnson DK, Biddy MJ, Beckham GT (2014) Evaluation of clean fractionation pretreatment for the production of renewable fuels and chemicals from corn stover. ACS Sus Chem Eng 2(6):1364–1376CrossRef
22.
go back to reference Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science 343(6168):277–280CrossRef Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science 343(6168):277–280CrossRef
23.
go back to reference Nguyen TY, Cai CM, Kumar R, Wyman CE (2015) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 8(10):1716–1725CrossRef Nguyen TY, Cai CM, Kumar R, Wyman CE (2015) Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass. ChemSusChem 8(10):1716–1725CrossRef
24.
go back to reference Rodríguez A, Serrano L, Moral A, Jiménez L (2008) Pulping of rice straw with high-boiling point organosolv solvents. Biochem EngJ 42(3):243–247CrossRef Rodríguez A, Serrano L, Moral A, Jiménez L (2008) Pulping of rice straw with high-boiling point organosolv solvents. Biochem EngJ 42(3):243–247CrossRef
25.
go back to reference Ferraz A, Rodríguez J, Freer J, Baeza J (2000) Formic acid/acetone-organosolv pulping of white-rotted Pinus radiata softwood. J Chem Technol Biotechnol 75(12):1190–1196CrossRef Ferraz A, Rodríguez J, Freer J, Baeza J (2000) Formic acid/acetone-organosolv pulping of white-rotted Pinus radiata softwood. J Chem Technol Biotechnol 75(12):1190–1196CrossRef
28.
go back to reference Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481CrossRef Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481CrossRef
29.
go back to reference Ni Y, Hu Q (1995) Alcell® lignin solubility in ethanol–water mixtures. J Appl Polym Sci 57(12):1441–1446CrossRef Ni Y, Hu Q (1995) Alcell® lignin solubility in ethanol–water mixtures. J Appl Polym Sci 57(12):1441–1446CrossRef
30.
32.
go back to reference Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. In: Abe A, Dusek K, Kobayashi S (eds) Biopolymers. Springer, New York, pp 1–63 Hatakeyama H, Hatakeyama T (2009) Lignin structure, properties, and applications. In: Abe A, Dusek K, Kobayashi S (eds) Biopolymers. Springer, New York, pp 1–63
33.
go back to reference Duval A, Vilaplana F, Crestini C, Lawoko M (2016) Solvent screening for the fractionation of industrial Kraft lignin. Holzforschung 70(1):11–20CrossRef Duval A, Vilaplana F, Crestini C, Lawoko M (2016) Solvent screening for the fractionation of industrial Kraft lignin. Holzforschung 70(1):11–20CrossRef
34.
go back to reference Chatterjee S, Saito T (2014) Solvent fractionation of lignin. In: Naskar AK, Hoffman WP (ed) Polymer precursor-derived carbon. ACS Symposium Series, Washington D.C., pp.153–168 Chatterjee S, Saito T (2014) Solvent fractionation of lignin. In: Naskar AK, Hoffman WP (ed) Polymer precursor-derived carbon. ACS Symposium Series, Washington D.C., pp.153–168
36.
go back to reference Klett AS, Payne AM, Phongpreecha T, Hodge DB, Thies MC (2017) Benign fractionation of lignin with CO2-expanded solvents of acetic acid + water. Ind Eng Chem Res 56(34):9778–9782CrossRef Klett AS, Payne AM, Phongpreecha T, Hodge DB, Thies MC (2017) Benign fractionation of lignin with CO2-expanded solvents of acetic acid + water. Ind Eng Chem Res 56(34):9778–9782CrossRef
39.
go back to reference Mörck R, Reimann A, Kringstad KP (1988) Fractionation of Kraft lignin by successive extraction with organic solvents. III. Fractionation of kraft lignin from birch. Holzforschung 42(2):111–116CrossRef Mörck R, Reimann A, Kringstad KP (1988) Fractionation of Kraft lignin by successive extraction with organic solvents. III. Fractionation of kraft lignin from birch. Holzforschung 42(2):111–116CrossRef
44.
go back to reference Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Laboratory analytical procedure: determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory technical report NREL/TP-510-42618 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Laboratory analytical procedure: determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory technical report NREL/TP-510-42618
45.
go back to reference Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Laboratory analytical procedure: determination of extractives in biomass. National Renewable Energy Laboratory technical report NREL/TP-510-42619 Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Laboratory analytical procedure: determination of extractives in biomass. National Renewable Energy Laboratory technical report NREL/TP-510-42619
46.
go back to reference Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Laboratory analytical procedure: determination of ash in biomass. National Renewable Energy Laboratory technical report NREL/TP-510-42622 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Laboratory analytical procedure: determination of ash in biomass. National Renewable Energy Laboratory technical report NREL/TP-510-42622
48.
go back to reference Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Laboratory analytical procedure: determination of sugars, byproducts, and degradation products in liquid fraction process samples. National Renewable Energy Laboratory technical report NREL/TP-510-42623 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Laboratory analytical procedure: determination of sugars, byproducts, and degradation products in liquid fraction process samples. National Renewable Energy Laboratory technical report NREL/TP-510-42623
50.
go back to reference Phongpreecha T, Hool NC, Stoklosa RJ, Klett AS, Foster CE, Bhalla A, Holmes D, Thies MC, Hodge DB (2017) Predicting lignin depolymerization yields from quantifiable properties using fractionated biorefinery lignins. Green Chem 19(21):5131–5143CrossRef Phongpreecha T, Hool NC, Stoklosa RJ, Klett AS, Foster CE, Bhalla A, Holmes D, Thies MC, Hodge DB (2017) Predicting lignin depolymerization yields from quantifiable properties using fractionated biorefinery lignins. Green Chem 19(21):5131–5143CrossRef
51.
52.
go back to reference Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813CrossRef Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813CrossRef
53.
go back to reference Paszner L, Cho HJ (1989) Organosolv pulping: acidic catalysis options and their effect on fiber quality and delignification. TAPPI J 72(2):135–142 Paszner L, Cho HJ (1989) Organosolv pulping: acidic catalysis options and their effect on fiber quality and delignification. TAPPI J 72(2):135–142
56.
go back to reference Li M, Heckwolf M, Crowe JD, Williams DL, Magee TD, Kaeppler SM, de Leon N, Hodge DB (2015) Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines. J Exp Bot 66(14):4305–4315. https://doi.org/10.1093/jxb/erv016 CrossRef Li M, Heckwolf M, Crowe JD, Williams DL, Magee TD, Kaeppler SM, de Leon N, Hodge DB (2015) Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines. J Exp Bot 66(14):4305–4315. https://​doi.​org/​10.​1093/​jxb/​erv016 CrossRef
59.
go back to reference Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–98CrossRef Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–98CrossRef
60.
go back to reference Ong RG, Chundawat SP, Hodge DB, Keskar S, Dale BE (2014) Linking plant biology and pretreatment: understanding the structure and organization of the plant cell wall and interactions with cellulosic biofuel production. In: McCann MC, Buckeridge MS, Carpita NC (ed) Plants and BioEnergy. Springer, New York, pp 231–253 Ong RG, Chundawat SP, Hodge DB, Keskar S, Dale BE (2014) Linking plant biology and pretreatment: understanding the structure and organization of the plant cell wall and interactions with cellulosic biofuel production. In: McCann MC, Buckeridge MS, Carpita NC (ed) Plants and BioEnergy. Springer, New York, pp 231–253
61.
go back to reference Chum HL, Johnson DK, Black SK (1990) Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res 29(2):156–162CrossRef Chum HL, Johnson DK, Black SK (1990) Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res 29(2):156–162CrossRef
62.
go back to reference Gilarranz MA, Rodriguez F, Oliet M (2000) Lignin behavior during the autocatalyzed methanol pulping of Eucalyptus globulus. Holzforschung 54:373–380CrossRef Gilarranz MA, Rodriguez F, Oliet M (2000) Lignin behavior during the autocatalyzed methanol pulping of Eucalyptus globulus. Holzforschung 54:373–380CrossRef
64.
go back to reference Belmares M, Blanco M, Goddard WA, Ross RB, Caldwell G, Chou SH, Pham J, Olofson PM, Thomas C (2004) Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comp Chem 25(15):1814–1826. https://doi.org/10.1002/jcc.20098 CrossRef Belmares M, Blanco M, Goddard WA, Ross RB, Caldwell G, Chou SH, Pham J, Olofson PM, Thomas C (2004) Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comp Chem 25(15):1814–1826. https://​doi.​org/​10.​1002/​jcc.​20098 CrossRef
65.
go back to reference Sameni J, Krigstin S, Sain M (2017) Solubility of lignin and acetylated lignin in organic solvents. BioRes 12(1):1548–1565CrossRef Sameni J, Krigstin S, Sain M (2017) Solubility of lignin and acetylated lignin in organic solvents. BioRes 12(1):1548–1565CrossRef
66.
go back to reference Lai C, Tu M, Xia C, Shi Z, Sun S, Yong Q, Yu S (2017) Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass. Energ Fuel 31(11):12317–12326CrossRef Lai C, Tu M, Xia C, Shi Z, Sun S, Yong Q, Yu S (2017) Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass. Energ Fuel 31(11):12317–12326CrossRef
67.
go back to reference Huang X, Korányi TI, Boot MD, Hensen EJ (2015) Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics. Green Chem 17(11):4941–4950CrossRef Huang X, Korányi TI, Boot MD, Hensen EJ (2015) Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics. Green Chem 17(11):4941–4950CrossRef
68.
go back to reference Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chemical Rev 110(6):3552–3599CrossRef Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chemical Rev 110(6):3552–3599CrossRef
69.
go back to reference Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int 55(29):8164–8215CrossRef Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int 55(29):8164–8215CrossRef
Metadata
Title
Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation
Authors
Janosch Bär
Thanaphong Phongpreecha
Sandip Kumar Singh
Melisa Kral Yilmaz
Cliff E. Foster
Jacob D. Crowe
David B. Hodge
Publication date
03-08-2018
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 4/2018
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-018-0330-x

Other articles of this Issue 4/2018

Biomass Conversion and Biorefinery 4/2018 Go to the issue