Skip to main content
Top
Published in: Neural Computing and Applications 14/2024

19-02-2024 | Original Article

Deep-GAN: an improved model for thyroid nodule identification and classification

Authors: Rajshree Srivastava, Pardeep Kumar

Published in: Neural Computing and Applications | Issue 14/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tailoring a deep convolutional neural network (DCNN) is a tedious and time-consuming task in the field of medical image analysis. In this research paper, Deep-generative adversial neural network (Deep-GAN) based model is proposed using grid search optimization (GSO) technique for identification and classification of thyroid nodule. The main objective of this work is to propose a deep learning (DL) model for the identification and classification of thyroid nodules without user or specialist intervention. The proposed model has gone through four phases namely (i) data acquisition, (ii) pre-processing (iii) data augmentation using GAN technique and (iv) optimization and classification using Deep-GAN model. Two pre-trained architectures namely Alex-Net and Visual Geometry Group (VGG-16) are considered for the identification and classification of thyroid nodule in ultrasonography (USG) images. From the experiment, it is found that Alex-GAN model has shown an improvement of 2 to 4 percentage points in comparison with VGG-GAN model and reported literature on Thyroid digital image database (TDID) public and collected dataset.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214CrossRef Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214CrossRef
2.
go back to reference Srivastava R, Kumar P (2022) A hybrid model for the identification and classification of thyroid nodules in medical ultrasound images. Int J Model Identif Control 41(1–2):32–42CrossRef Srivastava R, Kumar P (2022) A hybrid model for the identification and classification of thyroid nodules in medical ultrasound images. Int J Model Identif Control 41(1–2):32–42CrossRef
3.
go back to reference Srivastava R, Kumar P (2022) A contemporary review on soft computing techniques for thyroid identification and detection. Int J Comput Appl Technol 69(4):377–406CrossRef Srivastava R, Kumar P (2022) A contemporary review on soft computing techniques for thyroid identification and detection. Int J Comput Appl Technol 69(4):377–406CrossRef
4.
go back to reference La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, Negri E (2015) Thyroid cancer mortality and incidence: a global overview. Int J Cancer 136(9):2187–2195CrossRef La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, Negri E (2015) Thyroid cancer mortality and incidence: a global overview. Int J Cancer 136(9):2187–2195CrossRef
5.
go back to reference Dorj UO, Lee KK, Choi JY, Lee M (2018) The skin cancer classification using deep convolutional neural network. Multimedia Tools Appl 77(8):9909–9924CrossRef Dorj UO, Lee KK, Choi JY, Lee M (2018) The skin cancer classification using deep convolutional neural network. Multimedia Tools Appl 77(8):9909–9924CrossRef
6.
go back to reference Hussain S, Anwar SM, Majid M (2017) Brain tumor segmentation using cascaded deep convolutional neural network. In 2017 39th annual International Conference of the IEEE engineering in medicine and biology Society (EMBC) (pp. 1998–2001). IEEE Hussain S, Anwar SM, Majid M (2017) Brain tumor segmentation using cascaded deep convolutional neural network. In 2017 39th annual International Conference of the IEEE engineering in medicine and biology Society (EMBC) (pp. 1998–2001). IEEE
7.
go back to reference Chon A, Balachandar N, Lu P (2017) Deep convolutional neural networks for lung cancer detection. Standford University 1–9 Chon A, Balachandar N, Lu P (2017) Deep convolutional neural networks for lung cancer detection. Standford University 1–9
8.
go back to reference Cheng X, Zhang C, Qian Y, Aloqaily M, Xiao Y (2021) Deep learning for 5G IoT systems. Int J Mach Learn Cybern 12(11):3049–3051CrossRef Cheng X, Zhang C, Qian Y, Aloqaily M, Xiao Y (2021) Deep learning for 5G IoT systems. Int J Mach Learn Cybern 12(11):3049–3051CrossRef
9.
go back to reference Le DN, Parvathy VS, Gupta D, Khanna A, Rodrigues JJ, Shankar K (2021) IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification. Int J Mach Learn Cybern 12(11):3235–3248CrossRef Le DN, Parvathy VS, Gupta D, Khanna A, Rodrigues JJ, Shankar K (2021) IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification. Int J Mach Learn Cybern 12(11):3235–3248CrossRef
10.
go back to reference Bi Z, Yu L, Gao H, Zhou P, Yao H (2021) Improved VGG model-based efficient traffic sign recognition for safe driving in 5G scenarios. Int J Mach Learn Cybern 12(11):3069–3080CrossRef Bi Z, Yu L, Gao H, Zhou P, Yao H (2021) Improved VGG model-based efficient traffic sign recognition for safe driving in 5G scenarios. Int J Mach Learn Cybern 12(11):3069–3080CrossRef
11.
go back to reference Cvitić I, Peraković D, Periša M, Gupta B (2021) Ensemble machine learning approach for classification of IoT devices in smart home. Int J Mach Learn Cybern 12(11):3179–3202CrossRef Cvitić I, Peraković D, Periša M, Gupta B (2021) Ensemble machine learning approach for classification of IoT devices in smart home. Int J Mach Learn Cybern 12(11):3179–3202CrossRef
12.
go back to reference Hu N, Tian Z, Lu H, Du X, Guizani M (2021) A multiple-kernel clustering based intrusion detection scheme for 5G and IoT networks. Int J Mach Learn Cybern 12(11):3129–3144CrossRef Hu N, Tian Z, Lu H, Du X, Guizani M (2021) A multiple-kernel clustering based intrusion detection scheme for 5G and IoT networks. Int J Mach Learn Cybern 12(11):3129–3144CrossRef
13.
go back to reference Yu R, Lu W, Lu H, Wang S, Li F, Zhang X, Yu J (2021) Sentence pair modeling based on semantic feature map for human interaction with IoT devices. Int J Mach Learn Cybern 12(11):3081–3099CrossRef Yu R, Lu W, Lu H, Wang S, Li F, Zhang X, Yu J (2021) Sentence pair modeling based on semantic feature map for human interaction with IoT devices. Int J Mach Learn Cybern 12(11):3081–3099CrossRef
14.
go back to reference Sharma N, Gupta S, Mehta P, Cheng X, Shankar A, Singh P, Nayak SR (2022) Offline signature verification using deep neural network with application to computer vision. J Electron Imaging 31(4):041210CrossRef Sharma N, Gupta S, Mehta P, Cheng X, Shankar A, Singh P, Nayak SR (2022) Offline signature verification using deep neural network with application to computer vision. J Electron Imaging 31(4):041210CrossRef
15.
go back to reference Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53(8):5455–5516CrossRef Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53(8):5455–5516CrossRef
16.
go back to reference Akbar SB, Thanupillai K, Sundararaj S (2022) Combining the advantages of AlexNet convolutional deep neural network optimized with anopheles search algorithm based feature extraction and random forest classifier for COVID-19 classification. Concurr Comput: Pract Exp 34(15):e6958CrossRef Akbar SB, Thanupillai K, Sundararaj S (2022) Combining the advantages of AlexNet convolutional deep neural network optimized with anopheles search algorithm based feature extraction and random forest classifier for COVID-19 classification. Concurr Comput: Pract Exp 34(15):e6958CrossRef
17.
go back to reference Hammad I, El-Sankary K (2018) Impact of approximate multipliers on VGG deep learning network. IEEE Access 6:60438–60444CrossRef Hammad I, El-Sankary K (2018) Impact of approximate multipliers on VGG deep learning network. IEEE Access 6:60438–60444CrossRef
19.
go back to reference Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Boltzmann machines. Cogn Sci 9(1):147–169 Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Boltzmann machines. Cogn Sci 9(1):147–169
20.
go back to reference Deng W, Zheng L, Ye Q, Kang G, Yang Y, Jiao J (2018) Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp 994–1003) Deng W, Zheng L, Ye Q, Kang G, Yang Y, Jiao J (2018) Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp 994–1003)
22.
go back to reference Qian X, Fu Y, Xiang T, Wang W, Qiu J, Wu Y, Jiang YG, Xue X (2018) Pose-normalized image generation for person re-identification. In: Proceedings of the European conference on computer vision (ECCV) (pp. 650–667) Qian X, Fu Y, Xiang T, Wang W, Qiu J, Wu Y, Jiang YG, Xue X (2018) Pose-normalized image generation for person re-identification. In: Proceedings of the European conference on computer vision (ECCV) (pp. 650–667)
23.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
24.
go back to reference Khan ID, Khan MH, Farooq O, Khan YU (2021r). A comparative analysis of seizure detection via scalogram using GoogLeNet, Alex-Net and SqueezeNet. In: 2021 Smart Technologies, Communication and Robotics (STCR) (pp. 1–5). IEEE Khan ID, Khan MH, Farooq O, Khan YU (2021r). A comparative analysis of seizure detection via scalogram using GoogLeNet, Alex-Net and SqueezeNet. In: 2021 Smart Technologies, Communication and Robotics (STCR) (pp. 1–5). IEEE
25.
go back to reference Han X, Zhong Y, Cao L, Zhang L (2017) Pre-trained Alex-Net architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification. Remote Sensing 9(8):848CrossRef Han X, Zhong Y, Cao L, Zhang L (2017) Pre-trained Alex-Net architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification. Remote Sensing 9(8):848CrossRef
26.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556
27.
go back to reference Rai HM, Chatterjee K (2021) 2D MRI image analysis and brain tumor detection using deep learning CNN model LeU-Net. Multimedia Tools Appl 1–31 Rai HM, Chatterjee K (2021) 2D MRI image analysis and brain tumor detection using deep learning CNN model LeU-Net. Multimedia Tools Appl 1–31
29.
go back to reference Wang J, Li S, Song W, Qin H, Zhang B, Hao A (2018) Learning from weakly-labelled clinical data for automatic thyroid nodule classification in ultrasound images. In: 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 3114–3118). IEEE Wang J, Li S, Song W, Qin H, Zhang B, Hao A (2018) Learning from weakly-labelled clinical data for automatic thyroid nodule classification in ultrasound images. In: 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 3114–3118). IEEE
30.
go back to reference Pedraza L, Vargas C, Narváez F, Durán O, Muñoz E, Romero E (2015) An open access thyroid ultrasound image database. In: 10th International symposium on medical information processing and analysis (Vol. 9287, p. 92870W). International Society for Optics and Photonics Pedraza L, Vargas C, Narváez F, Durán O, Muñoz E, Romero E (2015) An open access thyroid ultrasound image database. In: 10th International symposium on medical information processing and analysis (Vol. 9287, p. 92870W). International Society for Optics and Photonics
31.
go back to reference Song W, Li S, Liu J, Qin H, Zhang B, Zhang S, Hao A (2018) Multitask cascade convolution neural networks for automatic thyroid nodule detection and recognition. IEEE J Biomed Health Inform 23(3):1215–1224CrossRef Song W, Li S, Liu J, Qin H, Zhang B, Zhang S, Hao A (2018) Multitask cascade convolution neural networks for automatic thyroid nodule detection and recognition. IEEE J Biomed Health Inform 23(3):1215–1224CrossRef
32.
go back to reference Dandan L, Yakui Z, Linyao D, Xianli Z, Yi S (2018) Texture analysis and classification of diffuse thyroid diseases based on ultrasound images. In: 2018 IEEE International instrumentation and measurement technology conference (I2MTC) (pp. 1–6). IEEE Dandan L, Yakui Z, Linyao D, Xianli Z, Yi S (2018) Texture analysis and classification of diffuse thyroid diseases based on ultrasound images. In: 2018 IEEE International instrumentation and measurement technology conference (I2MTC) (pp. 1–6). IEEE
33.
go back to reference Nguyen DT, Pham TD, Batchuluun G, Yoon HS, Park KR (2019) Artificial intelligence-based thyroid nodule classification using information from spatial and frequency domains. J Clin Med 8(11):1976CrossRef Nguyen DT, Pham TD, Batchuluun G, Yoon HS, Park KR (2019) Artificial intelligence-based thyroid nodule classification using information from spatial and frequency domains. J Clin Med 8(11):1976CrossRef
34.
go back to reference Colakoglu B, Alis D, Yergin M (2019) Diagnostic value of machine learning-based quantitative texture analysis in differentiating benign and malignant thyroid nodules. J Oncol Colakoglu B, Alis D, Yergin M (2019) Diagnostic value of machine learning-based quantitative texture analysis in differentiating benign and malignant thyroid nodules. J Oncol
35.
go back to reference Wu, Y., & Liu, P. (2019, October). A Classification Algorithm of Ultrasonic Thyroid Standard Planes Using LBP and HOG Features. In 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID) (pp. 103–107). IEEE. Wu, Y., & Liu, P. (2019, October). A Classification Algorithm of Ultrasonic Thyroid Standard Planes Using LBP and HOG Features. In 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID) (pp. 103–107). IEEE.
36.
go back to reference Ajilisa OA, Jagathyraj VP, Sabu MK (2020) Computer-aided diagnosis of thyroid nodule from ultrasound images using transfer learning from deep convolutional neural network models. In: 2020 Advanced computing and communication technologies for high performance applications (ACCTHPA) (pp. 237–241). IEEE Ajilisa OA, Jagathyraj VP, Sabu MK (2020) Computer-aided diagnosis of thyroid nodule from ultrasound images using transfer learning from deep convolutional neural network models. In: 2020 Advanced computing and communication technologies for high performance applications (ACCTHPA) (pp. 237–241). IEEE
37.
go back to reference Nguyen DT, Kang JK, Pham TD, Batchuluun G, Park KR (2021) Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence. Sensors 20(7):1822CrossRef Nguyen DT, Kang JK, Pham TD, Batchuluun G, Park KR (2021) Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence. Sensors 20(7):1822CrossRef
38.
go back to reference Hang Y (2021) Thyroid nodule classification in ultrasound images by fusion of conventional features and Res-GAN deep features. J Healthcare Eng Hang Y (2021) Thyroid nodule classification in ultrasound images by fusion of conventional features and Res-GAN deep features. J Healthcare Eng
39.
go back to reference Zhu YC, AlZoubi A, Jassim S, Jiang Q, Zhang Y, Wang YB, Hongbo DU (2021) A generic deep learning framework to classify thyroid and breast lesions in ultrasound images. Ultrasonics 110:106300CrossRef Zhu YC, AlZoubi A, Jassim S, Jiang Q, Zhang Y, Wang YB, Hongbo DU (2021) A generic deep learning framework to classify thyroid and breast lesions in ultrasound images. Ultrasonics 110:106300CrossRef
41.
go back to reference Richman DM, Benson CB, Doubilet PM, Wassner AJ, Asch E, Cherella CE, Smith JR, Frates MC (2020) Assessment of American college of radiology thyroid imaging reporting and data system (TI-RADS) for pediatric thyroid nodules. Radiology 294(2):415–420CrossRef Richman DM, Benson CB, Doubilet PM, Wassner AJ, Asch E, Cherella CE, Smith JR, Frates MC (2020) Assessment of American college of radiology thyroid imaging reporting and data system (TI-RADS) for pediatric thyroid nodules. Radiology 294(2):415–420CrossRef
42.
go back to reference Gupta V, Sachdeva S, Dohare N (2021) Deep similarity learning for disease prediction. Trends Deep Learn Methodol 183–206 Gupta V, Sachdeva S, Dohare N (2021) Deep similarity learning for disease prediction. Trends Deep Learn Methodol 183–206
43.
go back to reference Schavemaker JG, Reinders MJ, Gerbrands JJ, Backer E (2000) Image sharpening by morphological filtering. Pattern Recogn 33(6):997–1012CrossRef Schavemaker JG, Reinders MJ, Gerbrands JJ, Backer E (2000) Image sharpening by morphological filtering. Pattern Recogn 33(6):997–1012CrossRef
44.
go back to reference Shams S, Platania R, Zhang J, Kim J, Lee K, Park SJ (2018) Deep generative breast cancer screening and diagnosis. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 859–867 Shams S, Platania R, Zhang J, Kim J, Lee K, Park SJ (2018) Deep generative breast cancer screening and diagnosis. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 859–867
45.
go back to reference Wang D, Lu Z, Xu Y, Wang Z, Santella A, Bao Z (2019) Cellular structure image classification with small targeted training samples. IEEE Access 7:148967–148974CrossRef Wang D, Lu Z, Xu Y, Wang Z, Santella A, Bao Z (2019) Cellular structure image classification with small targeted training samples. IEEE Access 7:148967–148974CrossRef
46.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27.
47.
go back to reference Alqahtani H, Kavakli-Thorne M, Kumar G (2021) Applications of generative adversarial networks (GANS): an updated review. Archiv Comput Methods Eng 28(2):525–552MathSciNetCrossRef Alqahtani H, Kavakli-Thorne M, Kumar G (2021) Applications of generative adversarial networks (GANS): an updated review. Archiv Comput Methods Eng 28(2):525–552MathSciNetCrossRef
49.
go back to reference Lu S, Lu Z, Zhang YD (2019) Pathological brain detection based on Alex-Net and transfer learning. J Comput Sci 30:41–47CrossRef Lu S, Lu Z, Zhang YD (2019) Pathological brain detection based on Alex-Net and transfer learning. J Comput Sci 30:41–47CrossRef
50.
go back to reference Lu T, Han B, Yu F (2021) Detection and classification of marine mammal sounds using Alex-Net with transfer learning. Eco Inform 62:101277CrossRef Lu T, Han B, Yu F (2021) Detection and classification of marine mammal sounds using Alex-Net with transfer learning. Eco Inform 62:101277CrossRef
51.
go back to reference Hosny KM, Kassem MA, Fouad MM (2020) Classification of skin lesions into seven classes using transfer learning with Alex-Net. J Digit Imaging 33(5):1325–1334CrossRef Hosny KM, Kassem MA, Fouad MM (2020) Classification of skin lesions into seven classes using transfer learning with Alex-Net. J Digit Imaging 33(5):1325–1334CrossRef
52.
go back to reference Jahangeer GSB, Rajkumar TD (2021) Early detection of breast cancer using hybrid of series network and VGG-16. Multimedia Tools Appl 80(5):7853–7886CrossRef Jahangeer GSB, Rajkumar TD (2021) Early detection of breast cancer using hybrid of series network and VGG-16. Multimedia Tools Appl 80(5):7853–7886CrossRef
53.
go back to reference Manavi F, Sharma A, Sharma R, Tsunoda T, Shatabda S, Dehzangi I (2023) CNN-Pred: Prediction of single-stranded and double-stranded DNA-binding protein using convolutional neural networks. Gene 853:147045CrossRef Manavi F, Sharma A, Sharma R, Tsunoda T, Shatabda S, Dehzangi I (2023) CNN-Pred: Prediction of single-stranded and double-stranded DNA-binding protein using convolutional neural networks. Gene 853:147045CrossRef
54.
go back to reference Cimr D, Fujita H, Tomaskova H, Cimler R, Selamat A (2023) Automatic seizure detection by convolutional neural networks with computational complexity analysis. Comput Methods Programs Biomed 229:107277CrossRef Cimr D, Fujita H, Tomaskova H, Cimler R, Selamat A (2023) Automatic seizure detection by convolutional neural networks with computational complexity analysis. Comput Methods Programs Biomed 229:107277CrossRef
55.
go back to reference Karaddi SH, Sharma LD (2023) Automated multi-class classification of lung diseases from CXR-images using pre-trained convolutional neural networks. Expert Syst Appl 211:118650CrossRef Karaddi SH, Sharma LD (2023) Automated multi-class classification of lung diseases from CXR-images using pre-trained convolutional neural networks. Expert Syst Appl 211:118650CrossRef
56.
go back to reference Srivastava R, Kumar P (2023) Optimizing CNN based model for thyroid nodule classification using data augmentation, segmentation, and boundary detection techniques. Multimedia Tools Appl 82:41037–41072CrossRef Srivastava R, Kumar P (2023) Optimizing CNN based model for thyroid nodule classification using data augmentation, segmentation, and boundary detection techniques. Multimedia Tools Appl 82:41037–41072CrossRef
Metadata
Title
Deep-GAN: an improved model for thyroid nodule identification and classification
Authors
Rajshree Srivastava
Pardeep Kumar
Publication date
19-02-2024
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 14/2024
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-024-09492-6

Other articles of this Issue 14/2024

Neural Computing and Applications 14/2024 Go to the issue

Premium Partner