Skip to main content
Top
Published in: Neural Computing and Applications 14/2024

21-02-2024 | Original Article

Deep non-blind deblurring network for saturated blurry images

Authors: Bo Fu, Shilin Fu, Yuechu Wu, Yuanxin Mao, Yonggong Ren, Dang N. H. Thanh

Published in: Neural Computing and Applications | Issue 14/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Non-blind image deblurring has attracted a lot of attention in the field of low-level vision. However, the existing non-blind deblurring methods cannot effectively deal with a saturated blurry image. The key point is that the degradation model of saturated blurry images does not satisfy the linear convolution model of a conventional blurry image. To solve the problem, in this paper, we proposed a novel deep non-blind deblurring method, dubbed saturated image non-blind deblurring network(SDBNet). The SDBNet contains two trainable sub-network, i.e., confident estimate network (CEN) and detail enhance network (DEN). Specifically, the SDBNet uses CEN to estimate the confidence map for the saturated blurry image, which is used to recognize saturated pixels in the blurry image, and then uses the confidence map, and blur kernel to restore the blurry image. Finally, we use DEN to enhance the edges and textures of the restored image. We first pre-train CEN and DEN. In order to effectively pre-train CEN, we propose a new robust function, which is used to generate label data for CEN. The experimental results show that compared with several existing non-blind deblurring methods, SDBNet can effectively restore saturated blurry images and better restore the texture, edge, and other structural information of blurry images.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng S, Liu R, He Y, Fan X, Luo Z (2020) Blind image deblurring via hybrid deep priors modeling. Neurocomputing 387:334–345CrossRef Cheng S, Liu R, He Y, Fan X, Luo Z (2020) Blind image deblurring via hybrid deep priors modeling. Neurocomputing 387:334–345CrossRef
2.
go back to reference Javaran TA, Hassanpour H, Abolghasemi V (2017) Non-blind image deconvolution using a regularization based on re-blurring process. Comput Vis Image Underst 154:16–34CrossRef Javaran TA, Hassanpour H, Abolghasemi V (2017) Non-blind image deconvolution using a regularization based on re-blurring process. Comput Vis Image Underst 154:16–34CrossRef
3.
go back to reference Wang W, Su C (2022) An optimization method for motion blur image restoration and ringing suppression via texture mapping. ISA Trans 131:650–661CrossRef Wang W, Su C (2022) An optimization method for motion blur image restoration and ringing suppression via texture mapping. ISA Trans 131:650–661CrossRef
4.
go back to reference Richardson WH (1972) Bayesian-based iterative method of image restoration. JOSA 62(1):55–59CrossRef Richardson WH (1972) Bayesian-based iterative method of image restoration. JOSA 62(1):55–59CrossRef
5.
go back to reference Wiener N, Wiener N, Mathematician C, Wiener N, Wiener N, Mathématicien C (1949) Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications, vol. 113, no. 21 Wiener N, Wiener N, Mathematician C, Wiener N, Wiener N, Mathématicien C (1949) Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications, vol. 113, no. 21
6.
go back to reference Krishnan D, Fergus R (2009) Fast image deconvolution using hyper-laplacian priors. In: NeurIPS, pp 1033–1041 Krishnan D, Fergus R (2009) Fast image deconvolution using hyper-laplacian priors. In: NeurIPS, pp 1033–1041
7.
go back to reference Chan SH, Wang X, Elgendy OA (2017) Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans Comput 3(1):84–98MathSciNet Chan SH, Wang X, Elgendy OA (2017) Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans Comput 3(1):84–98MathSciNet
8.
go back to reference Schmidt U, Rother C, Nowozin S, Jancsary J, Roth S (2013) Discriminative non-blind deblurring. In: IEEE CVPR, pp 604–611 Schmidt U, Rother C, Nowozin S, Jancsary J, Roth S (2013) Discriminative non-blind deblurring. In: IEEE CVPR, pp 604–611
9.
go back to reference Schmidt U, Jancsary J, Nowozin S, Roth S, Rother C (2016) Cascades of regression tree fields for image restoration. IEEE Trans Pattern Anal Mach Intell 38(4):677–689CrossRef Schmidt U, Jancsary J, Nowozin S, Roth S, Rother C (2016) Cascades of regression tree fields for image restoration. IEEE Trans Pattern Anal Mach Intell 38(4):677–689CrossRef
10.
go back to reference Tappen MF, Liu C, Adelson EH, Freeman WT (2007) Learning gaussian conditional random fields for low-level vision. In: IEEE CVPR Tappen MF, Liu C, Adelson EH, Freeman WT (2007) Learning gaussian conditional random fields for low-level vision. In: IEEE CVPR
11.
go back to reference Zoran D, Weiss Y (2011) From learning models of natural image patches to whole image restoration. In: IEEE ICCV, pp 479–486 Zoran D, Weiss Y (2011) From learning models of natural image patches to whole image restoration. In: IEEE ICCV, pp 479–486
12.
go back to reference Chen Y, Yu W, Pock T (2015) On learning optimized reaction diffusion processes for effective image restoration. In: IEEE CVPR, pp 5261–5269 Chen Y, Yu W, Pock T (2015) On learning optimized reaction diffusion processes for effective image restoration. In: IEEE CVPR, pp 5261–5269
13.
go back to reference Chen Y, Pock T (2017) Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans Pattern Anal Mach Intell 39(6):1256–1272CrossRef Chen Y, Pock T (2017) Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans Pattern Anal Mach Intell 39(6):1256–1272CrossRef
14.
go back to reference Zhang K, Zuo W, Gu S, Zhang L (2017) Learning deep CNN denoiser prior for image restoration. In: IEEE CVPR, pp 3929–3938 Zhang K, Zuo W, Gu S, Zhang L (2017) Learning deep CNN denoiser prior for image restoration. In: IEEE CVPR, pp 3929–3938
15.
go back to reference Zhang K, Li Y, Zuo W, Zhang L, Van Gool L, Timofte R (2021) Plug-and-play image restoration with deep denoiser prior. IEEE Trans Pattern Anal Mach Intell 44(10):6360–6376CrossRef Zhang K, Li Y, Zuo W, Zhang L, Van Gool L, Timofte R (2021) Plug-and-play image restoration with deep denoiser prior. IEEE Trans Pattern Anal Mach Intell 44(10):6360–6376CrossRef
16.
go back to reference Zhang J, Pan J, Lai W-S, Lau RW, Yang MH (2017) Learning fully convolutional networks for iterative non-blind deconvolution. In: IEEE CVPR, pp 3817–3825 Zhang J, Pan J, Lai W-S, Lau RW, Yang MH (2017) Learning fully convolutional networks for iterative non-blind deconvolution. In: IEEE CVPR, pp 3817–3825
17.
go back to reference Chen L, Zhang J, Lin S, Fang F, Ren JS (2021) Blind deblurring for saturated images. In: IEEE CVPR, pp 6308–6316 Chen L, Zhang J, Lin S, Fang F, Ren JS (2021) Blind deblurring for saturated images. In: IEEE CVPR, pp 6308–6316
18.
go back to reference Cho S, Wang J, Lee S (2011) Handling outliers in non-blind image deconvolution. In: IEEE ICCV, pp 495–502 Cho S, Wang J, Lee S (2011) Handling outliers in non-blind image deconvolution. In: IEEE ICCV, pp 495–502
19.
go back to reference Whyte O, Sivic J, Zisserman A (2014) Deblurring shaken and partially saturated images. Int J Comput Vision 110(2):185–201CrossRef Whyte O, Sivic J, Zisserman A (2014) Deblurring shaken and partially saturated images. Int J Comput Vision 110(2):185–201CrossRef
20.
go back to reference Pan J, Lin Z, Su Z, Yang M (2016) Robust kernel estimation with outliers handling for image deblurring. In: IEEE CVPR, pp 2800–2808 Pan J, Lin Z, Su Z, Yang M (2016) Robust kernel estimation with outliers handling for image deblurring. In: IEEE CVPR, pp 2800–2808
21.
go back to reference Zhang X, Wang R, Chen D, Zhao Y, Gao W (2021) Handling outliers by robust m-estimation in blind image deblurring. IEEE Trans Multimed 23:3215–3226CrossRef Zhang X, Wang R, Chen D, Zhao Y, Gao W (2021) Handling outliers by robust m-estimation in blind image deblurring. IEEE Trans Multimed 23:3215–3226CrossRef
22.
go back to reference Dong J, Pan J (2021) Deep outlier handling for image deblurring. IEEE Trans Image Process 30:1799–1811CrossRef Dong J, Pan J (2021) Deep outlier handling for image deblurring. IEEE Trans Image Process 30:1799–1811CrossRef
23.
go back to reference Chen L, Zhang J, Pan J, Lin S, Fang F, Ren JS (2021) Learning a non-blind deblurring network for night blurry images. In: IEEE CVPR, Vol. 10, pp 542–550 Chen L, Zhang J, Pan J, Lin S, Fang F, Ren JS (2021) Learning a non-blind deblurring network for night blurry images. In: IEEE CVPR, Vol. 10, pp 542–550
24.
go back to reference Pan J, Sun D, Pfister H, Yang M (2018) Deblurring images via dark channel prior. IEEE Trans Pattern Anal Mach Intell 40(10):2315–2328CrossRef Pan J, Sun D, Pfister H, Yang M (2018) Deblurring images via dark channel prior. IEEE Trans Pattern Anal Mach Intell 40(10):2315–2328CrossRef
25.
go back to reference Chen L, Fang F, Wang T, Zhang G (2019) Blind image deblurring with local maximum gradient prior. In: IEEE CVPR, pp 1742–1750 Chen L, Fang F, Wang T, Zhang G (2019) Blind image deblurring with local maximum gradient prior. In: IEEE CVPR, pp 1742–1750
26.
go back to reference Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27(3):73CrossRef Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27(3):73CrossRef
27.
go back to reference Pan J, Hu Z, Su Z, Yang M (2014) Deblurring text images via l0-regularized intensity and gradient prior. In: IEEE CVPR, pp 2901–2908 Pan J, Hu Z, Su Z, Yang M (2014) Deblurring text images via l0-regularized intensity and gradient prior. In: IEEE CVPR, pp 2901–2908
28.
go back to reference Pan J, Hu Z, Su Z, Yang M-H (2016) \(l_0\)-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans Pattern Anal Mach Intell 39(2):342–355CrossRef Pan J, Hu Z, Su Z, Yang M-H (2016) \(l_0\)-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans Pattern Anal Mach Intell 39(2):342–355CrossRef
29.
go back to reference Xu L, Zheng S, Jia J (2013) Unnatural L0 sparse representation for natural image deblurring. In: IEEE CVPR, pp 1107–1114 Xu L, Zheng S, Jia J (2013) Unnatural L0 sparse representation for natural image deblurring. In: IEEE CVPR, pp 1107–1114
30.
go back to reference Ren W, Cao X, Pan J, Guo X, Zuo W, Yang M (2016) Image deblurring via enhanced low-rank prior. IEEE Trans Image Process 25(7):3426–3437MathSciNetCrossRef Ren W, Cao X, Pan J, Guo X, Zuo W, Yang M (2016) Image deblurring via enhanced low-rank prior. IEEE Trans Image Process 25(7):3426–3437MathSciNetCrossRef
31.
go back to reference Yan Y, Ren W, Guo Y, Wang R, Cao X (2017) Image deblurring via extreme channels prior. In: IEEE CVPR, pp 6978–6986 Yan Y, Ren W, Guo Y, Wang R, Cao X (2017) Image deblurring via extreme channels prior. In: IEEE CVPR, pp 6978–6986
32.
go back to reference Rudin LI, Osher SJ (1994) Total variation based image restoration with free local constraints. In: IEEE ICIP, pp 31–35 Rudin LI, Osher SJ (1994) Total variation based image restoration with free local constraints. In: IEEE ICIP, pp 31–35
33.
go back to reference Wang Y, Yang J, Yin W, Zhang Y (2008) A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imag Sci 1(3):248–272MathSciNetCrossRef Wang Y, Yang J, Yin W, Zhang Y (2008) A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imag Sci 1(3):248–272MathSciNetCrossRef
34.
go back to reference Fortunato HE, Oliveira MM (2014) Fast high-quality non-blind deconvolution using sparse adaptive priors. Visual Comput 30(6–8):661–671CrossRef Fortunato HE, Oliveira MM (2014) Fast high-quality non-blind deconvolution using sparse adaptive priors. Visual Comput 30(6–8):661–671CrossRef
35.
go back to reference Schmidt U, Gao Q, Roth S (2010) A generative perspective on MRFS in low-level vision. In: IEEE CVPR, pp. 1751–1758 Schmidt U, Gao Q, Roth S (2010) A generative perspective on MRFS in low-level vision. In: IEEE CVPR, pp. 1751–1758
36.
go back to reference Schmidt U, Roth S (2014) Shrinkage fields for effective image restoration. In: IEEE CVPR, pp 2774–2781 Schmidt U, Roth S (2014) Shrinkage fields for effective image restoration. In: IEEE CVPR, pp 2774–2781
37.
go back to reference Li L, Pan J, Lai W, Gao C, Sang N, Yang M (2019) Blind image deblurring via deep discriminative priors. Int J Comput Vision 127(8):1025–1043CrossRef Li L, Pan J, Lai W, Gao C, Sang N, Yang M (2019) Blind image deblurring via deep discriminative priors. Int J Comput Vision 127(8):1025–1043CrossRef
38.
go back to reference Zhang J, Pan J, Lai W, Lau RWH, Yang M (2017) Learning fully convolutional networks for iterative non-blind deconvolution. In: IEEE CVPR, pp 6969–6977 Zhang J, Pan J, Lai W, Lau RWH, Yang M (2017) Learning fully convolutional networks for iterative non-blind deconvolution. In: IEEE CVPR, pp 6969–6977
39.
go back to reference Gong D, Zhang Z, Shi Q, van den Hengel A, Shen C, Zhang Y (2020) Learning deep gradient descent optimization for image deconvolution. IEEE Trans Neural Netw Learn Syst 31(12):5468–5482MathSciNetCrossRef Gong D, Zhang Z, Shi Q, van den Hengel A, Shen C, Zhang Y (2020) Learning deep gradient descent optimization for image deconvolution. IEEE Trans Neural Netw Learn Syst 31(12):5468–5482MathSciNetCrossRef
40.
go back to reference Dong J, Roth S, Schiele B (2021) Learning spatially-variant MAP models for non-blind image deblurring. In: IEEE CVPR, pp 4886–4895 Dong J, Roth S, Schiele B (2021) Learning spatially-variant MAP models for non-blind image deblurring. In: IEEE CVPR, pp 4886–4895
41.
go back to reference Wang D, Tang H, Pan J, Tang J (2021) Learning a tree-structured channel-wise refinement network for efficient image deraining. In: IEEE ICME, pp 1–6 Wang D, Tang H, Pan J, Tang J (2021) Learning a tree-structured channel-wise refinement network for efficient image deraining. In: IEEE ICME, pp 1–6
42.
go back to reference Wang D, Pan J, Tang J (2023) Single image deraining using residual channel attention networks. J Comput Sci Technol 38(2):439–454CrossRef Wang D, Pan J, Tang J (2023) Single image deraining using residual channel attention networks. J Comput Sci Technol 38(2):439–454CrossRef
43.
go back to reference Dong J, Pan J, Su Z, Yang M (2017) Blind image deblurring with outlier handling. In: IEEE ICCV, pp 2497–2505 Dong J, Pan J, Su Z, Yang M (2017) Blind image deblurring with outlier handling. In: IEEE ICCV, pp 2497–2505
44.
go back to reference Hu Z, Cho S, Wang J, Yang M (2014) Deblurring low-light images with light streaks. In: IEEE CVPR, pp 3382–3389 Hu Z, Cho S, Wang J, Yang M (2014) Deblurring low-light images with light streaks. In: IEEE CVPR, pp 3382–3389
45.
go back to reference Wang D, Liu J, Liu R, Fan X (2023) An interactively reinforced paradigm for joint infrared-visible image fusion and saliency object detection. Inf Fus 98:101828CrossRef Wang D, Liu J, Liu R, Fan X (2023) An interactively reinforced paradigm for joint infrared-visible image fusion and saliency object detection. Inf Fus 98:101828CrossRef
46.
go back to reference Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y (2018) Image super-resolution using very deep residual channel attention networks. In: ECCV, vol. 11211, pp 294–310 Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y (2018) Image super-resolution using very deep residual channel attention networks. In: ECCV, vol. 11211, pp 294–310
47.
go back to reference Levin A, Weiss Y, Durand F, Freeman W (2009) Understanding and evaluating blind deconvolution algorithms. In: IEEE CVPR, pp 1964–1971 Levin A, Weiss Y, Durand F, Freeman W (2009) Understanding and evaluating blind deconvolution algorithms. In: IEEE CVPR, pp 1964–1971
48.
go back to reference Dabov K, Foi A, Katkovnik V, Egiazarian KO (2008) Image restoration by sparse 3d transform-domain collaborative filtering. In: SPIE, vol. 6812, pp 681207 Dabov K, Foi A, Katkovnik V, Egiazarian KO (2008) Image restoration by sparse 3d transform-domain collaborative filtering. In: SPIE, vol. 6812, pp 681207
49.
go back to reference Schuler CJ, Burger HC, Harmeling S, Schölkopf B (2013) A machine learning approach for non-blind image deconvolution. In: IEEE CVPR, pp 1067–1074 Schuler CJ, Burger HC, Harmeling S, Schölkopf B (2013) A machine learning approach for non-blind image deconvolution. In: IEEE CVPR, pp 1067–1074
50.
go back to reference Son H, Lee S (2017) Fast non-blind deconvolution via regularized residual networks with long/short skip-connections. In: IEEE ICCP, pp 23–32 Son H, Lee S (2017) Fast non-blind deconvolution via regularized residual networks with long/short skip-connections. In: IEEE ICCP, pp 23–32
51.
go back to reference Liu Y, Lai W, Chen Y, Kao Y, Yang M, Chuang Y, Huang J (2020) Single-image HDR reconstruction by learning to reverse the camera pipeline. In: IEEE CVPR, pp 1648–1657 Liu Y, Lai W, Chen Y, Kao Y, Yang M, Chuang Y, Huang J (2020) Single-image HDR reconstruction by learning to reverse the camera pipeline. In: IEEE CVPR, pp 1648–1657
52.
go back to reference Gharbi M, Chen J, Barron JT, Hasinoff SW, Durand F (2017) Deep bilateral learning for real-time image enhancement. ACM Trans Graph 36(4): 1–12 Gharbi M, Chen J, Barron JT, Hasinoff SW, Durand F (2017) Deep bilateral learning for real-time image enhancement. ACM Trans Graph 36(4): 1–12
53.
go back to reference Ma L, Ma T, Liu R, Fan X, Luo Z (2022) Toward fast, flexible, and robust low-light image enhancement. In: IEEE CVPR, pp 5627–5636 Ma L, Ma T, Liu R, Fan X, Luo Z (2022) Toward fast, flexible, and robust low-light image enhancement. In: IEEE CVPR, pp 5627–5636
54.
go back to reference Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R (2020) Nerf: representing scenes as neural radiance fields for view synthesis. In: Springer ECCV, vol. 12346, pp 405–421 Mildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R (2020) Nerf: representing scenes as neural radiance fields for view synthesis. In: Springer ECCV, vol. 12346, pp 405–421
55.
go back to reference Zheng H, Yong H, Zhang L (2021) Deep convolutional dictionary learning for image denoising. In: IEEE CVPR, pp 630–641 Zheng H, Yong H, Zhang L (2021) Deep convolutional dictionary learning for image denoising. In: IEEE CVPR, pp 630–641
56.
go back to reference Zhang K, Gool LV, Timofte R (2020) Deep unfolding network for image super-resolution. In: IEEE CVPR, pp 3214–3223 Zhang K, Gool LV, Timofte R (2020) Deep unfolding network for image super-resolution. In: IEEE CVPR, pp 3214–3223
Metadata
Title
Deep non-blind deblurring network for saturated blurry images
Authors
Bo Fu
Shilin Fu
Yuechu Wu
Yuanxin Mao
Yonggong Ren
Dang N. H. Thanh
Publication date
21-02-2024
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 14/2024
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-024-09495-3

Other articles of this Issue 14/2024

Neural Computing and Applications 14/2024 Go to the issue

Premium Partner