Skip to main content
Top
Published in: Neural Computing and Applications 18/2021

04-03-2021 | Original Article

DeepVisDroid: android malware detection by hybridizing image-based features with deep learning techniques

Authors: Khaled Bakour, Halil Murat Ünver

Published in: Neural Computing and Applications | Issue 18/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a novel hybrid deep learning model called DeepVisDroid has been suggested for detecting android malware samples based on hybridizing image-based features with deep learning techniques. To this end, four grayscale image datasets have been constructed by converting some files from the source of the android applications into grayscale images. Then, two types of image-based features, namely local features and global features, have been extracted from the constructed image datasets and used for training the proposed model. The bag of visual words representation has been used for constructing one feature vector from multiple local feature descriptors extracted from each image. After that, 1D-convolutional layers-based neural network model has been proposed and trained using the extracted local and global image-based features. To the best of our knowledge, this is the first time that a convolutional neural network model is trained based on this type of features and used in the android malware detection domain. Furthermore, two classical 2D-convolutional layers-based neural network models have been proposed and two well-known deep learning models have been tested in order to compare the results of the proposed DeepVisDroid model with the results of the traditional convolutional neural network models and the results of the state-of-the-art deep learning models. The results of the proposed DeepVisDroid model are very promising, where its classification accuracy reached more than 98% with very efficient run-time overhead ranging between 0.11 and 2.02 s for each sample.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
6.
go back to reference Mateless R, Rejabek D, Margalit O, Moskovitch R (2020) Decompiled APK based malicious code classification. Fut Gen Comput Syst 110:135–147CrossRef Mateless R, Rejabek D, Margalit O, Moskovitch R (2020) Decompiled APK based malicious code classification. Fut Gen Comput Syst 110:135–147CrossRef
7.
go back to reference Pei X, Yu L, Tian S (2020) AMalNet: a deep learning framework based on graph convolutional networks for malware detection. Comput Secur 93:101792CrossRef Pei X, Yu L, Tian S (2020) AMalNet: a deep learning framework based on graph convolutional networks for malware detection. Comput Secur 93:101792CrossRef
8.
go back to reference Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK (2019) Android malware detection based on system call sequences and LSTM. Multim Tools Appl 78(4):3979–3999CrossRef Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK (2019) Android malware detection based on system call sequences and LSTM. Multim Tools Appl 78(4):3979–3999CrossRef
9.
go back to reference Lee WY, Saxe J, Harang R (2019) SeqDroid: obfuscated android malware detection using stacked convolutional and recurrent neural networks. In: Deep learning applications for cyber security. Springer, pp 197–210 Lee WY, Saxe J, Harang R (2019) SeqDroid: obfuscated android malware detection using stacked convolutional and recurrent neural networks. In: Deep learning applications for cyber security. Springer, pp 197–210
10.
go back to reference Wang C, Xu Q, Lin X, Liu S (2019) Research on data mining of permissions mode for Android malware detection. Clust Comput 22(6):13337–13350CrossRef Wang C, Xu Q, Lin X, Liu S (2019) Research on data mining of permissions mode for Android malware detection. Clust Comput 22(6):13337–13350CrossRef
11.
go back to reference Pektaş A, Acarman T (2019) Learning to detect Android malware via opcode sequences. Neurocomputing 396:599–608CrossRef Pektaş A, Acarman T (2019) Learning to detect Android malware via opcode sequences. Neurocomputing 396:599–608CrossRef
12.
go back to reference Roopak S, Thomas T, Emmanuel S (2019) Android malware detection mechanism based on Bayesian model averaging. In: Recent findings in intelligent computing techniques. Springer, pp 87–96 Roopak S, Thomas T, Emmanuel S (2019) Android malware detection mechanism based on Bayesian model averaging. In: Recent findings in intelligent computing techniques. Springer, pp 87–96
13.
go back to reference Liu P, Wang W, Luo X et al (2021) NSDroid: efficient multi-classification of android malware using neighborhood signature in local function call graphs. Int J Inf Secur 20:59–71CrossRef Liu P, Wang W, Luo X et al (2021) NSDroid: efficient multi-classification of android malware using neighborhood signature in local function call graphs. Int J Inf Secur 20:59–71CrossRef
14.
go back to reference Pektaş A, Acarman T (2020) Deep learning for effective Android malware detection using API call graph embeddings. Soft Comput 24(2):1027–1043CrossRef Pektaş A, Acarman T (2020) Deep learning for effective Android malware detection using API call graph embeddings. Soft Comput 24(2):1027–1043CrossRef
15.
go back to reference Zou K, Luo X, Liu P, Wang W, Wang H (2019) ByteDroid: android malware detection using deep learning on bytecode sequences. In: Chinese conference on trusted computing and information security. Springer Zou K, Luo X, Liu P, Wang W, Wang H (2019) ByteDroid: android malware detection using deep learning on bytecode sequences. In: Chinese conference on trusted computing and information security. Springer
16.
go back to reference Taheri R, Ghahramani M, Javidan R, Shojafar M, Pooranian Z, Conti M (2020) Similarity-based android malware detection using Hamming distance of static binary features. Futur Gener Comput Syst 105:230–247CrossRef Taheri R, Ghahramani M, Javidan R, Shojafar M, Pooranian Z, Conti M (2020) Similarity-based android malware detection using Hamming distance of static binary features. Futur Gener Comput Syst 105:230–247CrossRef
17.
go back to reference Alzaylaee MK, Yerima SY, Sezer S (2020) DL-Droid: Deep learning based android malware detection using real devices. Comput Secur 89:101663CrossRef Alzaylaee MK, Yerima SY, Sezer S (2020) DL-Droid: Deep learning based android malware detection using real devices. Comput Secur 89:101663CrossRef
18.
go back to reference Bakour K, Ünver HM, Ghanem R (2019) The Android malware detection systems between hope and reality. SN Appl Sci 1(9):1120CrossRef Bakour K, Ünver HM, Ghanem R (2019) The Android malware detection systems between hope and reality. SN Appl Sci 1(9):1120CrossRef
19.
go back to reference Yen Y-S, Sun H-M (2019) An android mutation malware detection based on deep learning using visualization of importance from codes. Microelectron Reliab 93:109–114CrossRef Yen Y-S, Sun H-M (2019) An android mutation malware detection based on deep learning using visualization of importance from codes. Microelectron Reliab 93:109–114CrossRef
20.
go back to reference Hsien-De Huang T, Kao H-Y (2018) R2-d2: color-inspired convolutional neural network (CNN)-based android malware detections. In: 2018 IEEE international conference on big data (Big Data). IEEE Hsien-De Huang T, Kao H-Y (2018) R2-d2: color-inspired convolutional neural network (CNN)-based android malware detections. In: 2018 IEEE international conference on big data (Big Data). IEEE
22.
go back to reference Ünver HM, Bakour K (2020) Android malware detection based on image-based features and machine learning techniques. SN Appl Sci 2(7):1–15CrossRef Ünver HM, Bakour K (2020) Android malware detection based on image-based features and machine learning techniques. SN Appl Sci 2(7):1–15CrossRef
24.
go back to reference Onwuzurike L, Mariconti E, Andriotis P, Cristofaro ED, Ross G, Stringhini G (2019) MaMaDroid: detecting android malware by building markov chains of behavioral models (extended version). ACM Trans Priv Secur (TOPS) 22(2):14 Onwuzurike L, Mariconti E, Andriotis P, Cristofaro ED, Ross G, Stringhini G (2019) MaMaDroid: detecting android malware by building markov chains of behavioral models (extended version). ACM Trans Priv Secur (TOPS) 22(2):14
25.
go back to reference Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C (2014) Drebin: effective and explainable detection of android malware in your pocket. In: Ndss Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C (2014) Drebin: effective and explainable detection of android malware in your pocket. In: Ndss
26.
go back to reference Zhou Y, Jiang X (2012) Dissecting android malware: characterization and evolution. In: 2012 IEEE symposium on security and privacy. IEEE Zhou Y, Jiang X (2012) Dissecting android malware: characterization and evolution. In: 2012 IEEE symposium on security and privacy. IEEE
29.
go back to reference Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621CrossRef Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621CrossRef
30.
go back to reference Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRef Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRef
31.
go back to reference Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: European conference on computer vision. Springer Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: European conference on computer vision. Springer
32.
go back to reference Alcantarilla PF, Bartoli A, Davison AJ (2012) KAZE features. In: European conference on computer vision. Springer Alcantarilla PF, Bartoli A, Davison AJ (2012) KAZE features. In: European conference on computer vision. Springer
33.
go back to reference Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: European conference on computer vision. Springer Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: European conference on computer vision. Springer
34.
go back to reference Calonder M, Lepetit V, Strecha C, Fua P (2010) Brief: binary robust independent elementary features. In: European conference on computer vision. Springer Calonder M, Lepetit V, Strecha C, Fua P (2010) Brief: binary robust independent elementary features. In: European conference on computer vision. Springer
35.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition
36.
go back to reference Zhang A, Lipton ZC, Li M, Smola AJ (2019) Dive into deep learning. Unpublished Draft. Retrieved 19 Zhang A, Lipton ZC, Li M, Smola AJ (2019) Dive into deep learning. Unpublished Draft. Retrieved 19
37.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition
39.
go back to reference Bakour K, Ünver HM, Ghanem R (2019) A deep camouflage: evaluating android’s anti-malware systems robustness against hybridization of obfuscation techniques with injection attacks. Arab J Sci Eng 44(11):9333–9347CrossRef Bakour K, Ünver HM, Ghanem R (2019) A deep camouflage: evaluating android’s anti-malware systems robustness against hybridization of obfuscation techniques with injection attacks. Arab J Sci Eng 44(11):9333–9347CrossRef
Metadata
Title
DeepVisDroid: android malware detection by hybridizing image-based features with deep learning techniques
Authors
Khaled Bakour
Halil Murat Ünver
Publication date
04-03-2021
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 18/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05816-y

Other articles of this Issue 18/2021

Neural Computing and Applications 18/2021 Go to the issue

Premium Partner