Skip to main content
Top

2018 | OriginalPaper | Chapter

4. Defects Engineering for Performing SrTiO3-Based Thermoelectric Thin Films: Principles and Selected Approaches

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermoelectric energy-conversion technology based on oxide materials offers promising advantages over “traditional” non-oxide and intermetallics systems due to higher stability of oxides at elevated temperatures and in various redox conditions, high natural abundance and favourable environmental issues. Oxides also possess a unique defect chemistry, which can be precisely controlled by external redox conditions and redox-sensitive substitutions. Donor-substituted strontium titanate SrTiO3 represents a family of promising n-type thermoelectric materials, with specific electronic structure tunable via introduction of structural defects, and prevailing lattice contribution to the thermal transport, enabling various lattice engineering approaches to suppress the thermal conductivity. Based on review of the recently published research results, this chapter aims to demonstrate how, through controlled defect chemistry engineering in SrTiO3-based materials, one can tune the thermoelectric performance, breaking the coupling between thermal and electrical properties. The approach is based on compositional design in model systems, where prevailing defect types are shifted from extended oxygen-rich planes to oxygen vacancies, accompanied by presence of the A-site cationic deficiency. The contributions from various defects in the crystal lattice into electronic and thermal transport are demonstrated and discussed. The concept represents particular interest for thermoelectric films and superlattices based on strontium titanate, where introduction of specific defect types with potential impact on thermoelectric performance can be achieved in easier and/or more controllable manner.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–198 (2006)CrossRef T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–198 (2006)CrossRef
2.
go back to reference A. Date, A. Date, C. Dixon, A. Akbarzadeh, Progress of thermoelectric power generation systems: prospect for small to medium scale power generation. Renew. Sust. Energ. Rev. 33, 371–381 (2014)CrossRef A. Date, A. Date, C. Dixon, A. Akbarzadeh, Progress of thermoelectric power generation systems: prospect for small to medium scale power generation. Renew. Sust. Energ. Rev. 33, 371–381 (2014)CrossRef
3.
go back to reference X. Zhang, L.-D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Mater. 1, 92–105 (2015) X. Zhang, L.-D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Mater. 1, 92–105 (2015)
4.
go back to reference C. Suter, P. Tomeš, A. Weidenkaff, A. Steinfeld, A solar cavity-receiver packed with an array of thermoelectric converter modules. Sol. Energy 85, 1511–1518 (2011)CrossRef C. Suter, P. Tomeš, A. Weidenkaff, A. Steinfeld, A solar cavity-receiver packed with an array of thermoelectric converter modules. Sol. Energy 85, 1511–1518 (2011)CrossRef
5.
go back to reference G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)CrossRef G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)CrossRef
6.
go back to reference M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRef M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRef
7.
go back to reference K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)CrossRef K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)CrossRef
9.
go back to reference C. Uher, Skutterudite-Based Thermoelectrics, in Thermoelectrics Handbook, (CRC Press, 2005), pp. 17–34 C. Uher, Skutterudite-Based Thermoelectrics, in Thermoelectrics Handbook, (CRC Press, 2005), pp. 17–34
10.
go back to reference J. Leszczynski, K.T. Wojciechowski, A.L. Malecki, Studies on thermal decomposition and oxidation of CoSb3. J. Therm. Anal. Calorim. 105, 211–222 (2011)CrossRef J. Leszczynski, K.T. Wojciechowski, A.L. Malecki, Studies on thermal decomposition and oxidation of CoSb3. J. Therm. Anal. Calorim. 105, 211–222 (2011)CrossRef
11.
go back to reference K. Gała̧zka, S. Populoh, L. Sagarna, L. Karvonen, W. Xie, A. Beni, P. Schmutz, J. Hulliger, A. Weidenkaff, Phase formation, stability, and oxidation in (Ti, Zr, Hf)NiSn half-Heusler compounds. Phys Status Solidi Appl Mater Sci 211, 1259–1266 (2014)CrossRef K. Gała̧zka, S. Populoh, L. Sagarna, L. Karvonen, W. Xie, A. Beni, P. Schmutz, J. Hulliger, A. Weidenkaff, Phase formation, stability, and oxidation in (Ti, Zr, Hf)NiSn half-Heusler compounds. Phys Status Solidi Appl Mater Sci 211, 1259–1266 (2014)CrossRef
12.
go back to reference T. Fujii, I. Terasaki, Block-Layer Concept for the Layered Co Oxide: A Design for Thermoelectric Oxides, in Chemistry, Physics, and Materials Science of Thermoelectric Materials, ed. by M. G. Kanatzidis, S. D. Mahanti, T. P. Hogan (Eds), (Springer, 2003), pp. 71–87 T. Fujii, I. Terasaki, Block-Layer Concept for the Layered Co Oxide: A Design for Thermoelectric Oxides, in Chemistry, Physics, and Materials Science of Thermoelectric Materials, ed. by M. G. Kanatzidis, S. D. Mahanti, T. P. Hogan (Eds), (Springer, 2003), pp. 71–87
13.
go back to reference I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997)CrossRef I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997)CrossRef
14.
go back to reference K. Koumoto, I. Terasaki, R. Funahashi, Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206–210 (2006)CrossRef K. Koumoto, I. Terasaki, R. Funahashi, Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206–210 (2006)CrossRef
15.
go back to reference M. Backhaus-Ricoult, J. Rustad, L. Moore, C. Smith, J. Brown, Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation. Appl. Phys. A Mater. Sci. Process. 116, 433–470 (2014)CrossRef M. Backhaus-Ricoult, J. Rustad, L. Moore, C. Smith, J. Brown, Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation. Appl. Phys. A Mater. Sci. Process. 116, 433–470 (2014)CrossRef
16.
go back to reference G. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Zhou, Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system. Appl. Phys. Lett. 80, 3760 (2002)CrossRef G. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Zhou, Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system. Appl. Phys. Lett. 80, 3760 (2002)CrossRef
17.
go back to reference M. Ohtaki, Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion. Kyushu University Global COE Program Novel Carbon Resources Sciences Newsletter 3, 2010 M. Ohtaki, Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion. Kyushu University Global COE Program Novel Carbon Resources Sciences Newsletter 3, 2010
18.
go back to reference K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96, 1–23 (2013)CrossRef K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, C. Wan, Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96, 1–23 (2013)CrossRef
19.
go back to reference L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, A. Weidenkaff, CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077–8085 (2008)CrossRef L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, A. Weidenkaff, CaMn1-xNbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077–8085 (2008)CrossRef
20.
go back to reference H. Ohta, Thermoelectrics based on strontium titanate. Mater. Today 10, 44–49 (2007)CrossRef H. Ohta, Thermoelectrics based on strontium titanate. Mater. Today 10, 44–49 (2007)CrossRef
21.
go back to reference A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions. Phys. Chem. Chem. Phys. 16, 26946–26954 (2014)CrossRef A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions. Phys. Chem. Chem. Phys. 16, 26946–26954 (2014)CrossRef
22.
go back to reference Z. Lu, H. Zhang, W. Lei, D.C. Sinclair, I.M. Reaney, High-Figure-of-merit thermoelectric LA-doped A-site-deficient SrTiO3 ceramics. Chem. Mater. 28, 925–935 (2016)CrossRef Z. Lu, H. Zhang, W. Lei, D.C. Sinclair, I.M. Reaney, High-Figure-of-merit thermoelectric LA-doped A-site-deficient SrTiO3 ceramics. Chem. Mater. 28, 925–935 (2016)CrossRef
23.
go back to reference B. Zhang, J. Wang, T. Zou, S. Zhang, X. Yaer, N. Ding, C. Liu, L. Miao, Y. Li, Y. Wu, High thermoelectric performance of Nb-doped SrTiO 3 bulk materials with different doping levels. J. Mater. Chem. C 3, 11406–11411 (2015)CrossRef B. Zhang, J. Wang, T. Zou, S. Zhang, X. Yaer, N. Ding, C. Liu, L. Miao, Y. Li, Y. Wu, High thermoelectric performance of Nb-doped SrTiO 3 bulk materials with different doping levels. J. Mater. Chem. C 3, 11406–11411 (2015)CrossRef
24.
go back to reference S. Ohta, T. Nomura, H. Ohta, K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 18–21 (2005)CrossRef S. Ohta, T. Nomura, H. Ohta, K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 18–21 (2005)CrossRef
25.
go back to reference N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, K. Koumoto, Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci. Rep. 3, 3449 (2013)CrossRef N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, K. Koumoto, Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci. Rep. 3, 3449 (2013)CrossRef
26.
go back to reference Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang, M. Robbins, K. Simpson, R. Freer, I.A. Kinloch, Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces 7, 15898–15908 (2015)CrossRef Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang, M. Robbins, K. Simpson, R. Freer, I.A. Kinloch, Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces 7, 15898–15908 (2015)CrossRef
27.
go back to reference A.V. Kovalevsky, S. Populoh, S.G. Patrício, P. Thiel, M.C. Ferro, D.P. Fagg, J.R. Frade, A. Weidenkaff, Design of SrTiO3-based thermoelectrics by tungsten substitution. J. Phys. Chem. C 119, 4466–4478 (2015)CrossRef A.V. Kovalevsky, S. Populoh, S.G. Patrício, P. Thiel, M.C. Ferro, D.P. Fagg, J.R. Frade, A. Weidenkaff, Design of SrTiO3-based thermoelectrics by tungsten substitution. J. Phys. Chem. C 119, 4466–4478 (2015)CrossRef
28.
go back to reference P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ionics 179, 2047–2058 (2008)CrossRef P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ionics 179, 2047–2058 (2008)CrossRef
29.
go back to reference R. Moos, K.H. Hardtl, Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000 degrees and 1400 degrees C. J. Am. Ceram. Soc. 80, 2549–2562 (1997)CrossRef R. Moos, K.H. Hardtl, Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000 degrees and 1400 degrees C. J. Am. Ceram. Soc. 80, 2549–2562 (1997)CrossRef
30.
go back to reference C. Yu, M.L. Scullin, M. Huijben, R. Ramesh, A. Majumdar, Thermal conductivity reduction in oxygen-deficient strontium titanates. Appl. Phys. Lett. 92, 23–25 (2008) C. Yu, M.L. Scullin, M. Huijben, R. Ramesh, A. Majumdar, Thermal conductivity reduction in oxygen-deficient strontium titanates. Appl. Phys. Lett. 92, 23–25 (2008)
31.
go back to reference S.R. Popuri, A.J.M. Scott, R.A. Downie, M.A. Hall, E. Suard, R. Decourt, M. Pollet, J.-W.G. Bos, Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies. RSC Adv. 4, 33720–33723 (2014)CrossRef S.R. Popuri, A.J.M. Scott, R.A. Downie, M.A. Hall, E. Suard, R. Decourt, M. Pollet, J.-W.G. Bos, Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies. RSC Adv. 4, 33720–33723 (2014)CrossRef
32.
go back to reference Y. Wang, C. Wan, X. Zhang, L. Shen, K. Koumoto, A. Gupta, N. Bao, Influence of excess SrO on the thermoelectric properties of heavily doped SrTiO3 ceramics. Appl. Phys. Lett. 102, 183905 (2013)CrossRef Y. Wang, C. Wan, X. Zhang, L. Shen, K. Koumoto, A. Gupta, N. Bao, Influence of excess SrO on the thermoelectric properties of heavily doped SrTiO3 ceramics. Appl. Phys. Lett. 102, 183905 (2013)CrossRef
33.
go back to reference Y. Wang, K.H. Lee, H. Ohta, K. Koumoto, Thermoelectric properties of electron doped SrO(SrTiO3) n (n=1,2) ceramics. J. Appl. Phys. 105, 103701 (2009)CrossRef Y. Wang, K.H. Lee, H. Ohta, K. Koumoto, Thermoelectric properties of electron doped SrO(SrTiO3) n (n=1,2) ceramics. J. Appl. Phys. 105, 103701 (2009)CrossRef
34.
go back to reference J. Ravichandran, Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices. J. Mater. Res. 32, 1–21 (2016) J. Ravichandran, Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices. J. Mater. Res. 32, 1–21 (2016)
35.
go back to reference T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0<~x<~0.1). Phys. Rev. B 63, 113104 (2001)CrossRef T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0<~x<~0.1). Phys. Rev. B 63, 113104 (2001)CrossRef
36.
go back to reference M. Yamamoto, H. Ohta, K. Koumoto, Thermoelectric phase diagram in a CaTiO3-SrTiO3-BaTiO3 system. Appl. Phys. Lett. 90, 8–10 (2007) M. Yamamoto, H. Ohta, K. Koumoto, Thermoelectric phase diagram in a CaTiO3-SrTiO3-BaTiO3 system. Appl. Phys. Lett. 90, 8–10 (2007)
37.
go back to reference B. Jalan, S. Stemmer, Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films. Appl. Phys. Lett. 97, 42106 (2010)CrossRef B. Jalan, S. Stemmer, Large Seebeck coefficients and thermoelectric power factor of La-doped SrTiO3 thin films. Appl. Phys. Lett. 97, 42106 (2010)CrossRef
38.
go back to reference J.D. Baniecki, M. Ishii, H. Aso, K. Kobayashi, K. Kurihara, K. Yamanaka, A. Vailionis, R. Schafranek, Electronic transport behavior of off-stoichiometric La and Nb doped SrxTiyO3-δ epitaxial thin films and donor doped single-crystalline SrTiO3. Appl. Phys. Lett. 99, 232111 (2011)CrossRef J.D. Baniecki, M. Ishii, H. Aso, K. Kobayashi, K. Kurihara, K. Yamanaka, A. Vailionis, R. Schafranek, Electronic transport behavior of off-stoichiometric La and Nb doped SrxTiyO3-δ epitaxial thin films and donor doped single-crystalline SrTiO3. Appl. Phys. Lett. 99, 232111 (2011)CrossRef
39.
go back to reference S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 87, 3–5 (2005) S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl. Phys. Lett. 87, 3–5 (2005)
40.
go back to reference S. Kumar, A. Barasheed, H.N. Alshareef, High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping. ACS Appl. Mater. Interfaces 5, 7268–7273 (2013)CrossRef S. Kumar, A. Barasheed, H.N. Alshareef, High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping. ACS Appl. Mater. Interfaces 5, 7268–7273 (2013)CrossRef
41.
go back to reference A.I. Abutaha, S.R. Sarath Kumar, A. Mehdizadeh Dehkordi, T.M. Tritt, H.N. Alshareef, Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films. J. Mater. Chem. C 2, 9712–9719 (2014)CrossRef A.I. Abutaha, S.R. Sarath Kumar, A. Mehdizadeh Dehkordi, T.M. Tritt, H.N. Alshareef, Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films. J. Mater. Chem. C 2, 9712–9719 (2014)CrossRef
42.
go back to reference S. Kobayashi, Y. Mizumukai, T. Ohnishi, N. Shibata, Y. Ikuhara, T. Yamamoto, High electron mobility of Nb-doped SrTiO3 films stemming from rod-type Sr vacancy clusters. ACS Nano 9, 10769–10777 (2015)CrossRef S. Kobayashi, Y. Mizumukai, T. Ohnishi, N. Shibata, Y. Ikuhara, T. Yamamoto, High electron mobility of Nb-doped SrTiO3 films stemming from rod-type Sr vacancy clusters. ACS Nano 9, 10769–10777 (2015)CrossRef
43.
go back to reference L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)CrossRef L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)CrossRef
44.
go back to reference H. Ohta, S. Kim, Y. Mune, et al., Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129–134 (2007)CrossRef H. Ohta, S. Kim, Y. Mune, et al., Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129–134 (2007)CrossRef
45.
go back to reference S.R.S. Kumar, M.N. Hedhili, D. Cha, T.M. Tritt, H.N. Alshareef, Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers. Chem. Mater. 26, 2726–2732 (2014)CrossRef S.R.S. Kumar, M.N. Hedhili, D. Cha, T.M. Tritt, H.N. Alshareef, Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers. Chem. Mater. 26, 2726–2732 (2014)CrossRef
46.
go back to reference A.I. Abutaha, S.R.S. Kumar, K. Li, A.M. Dehkordi, T.M. Tritt, H.N. Alshareef, Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3. Chem. Mater. 27, 2165–2171 (2015)CrossRef A.I. Abutaha, S.R.S. Kumar, K. Li, A.M. Dehkordi, T.M. Tritt, H.N. Alshareef, Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3. Chem. Mater. 27, 2165–2171 (2015)CrossRef
47.
go back to reference A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, Effect of A-site cation deficiency on the thermoelectric performance of donor-substituted strontium titanate. J. Phys. Chem. C 118, 4596–4606 (2014)CrossRef A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, Effect of A-site cation deficiency on the thermoelectric performance of donor-substituted strontium titanate. J. Phys. Chem. C 118, 4596–4606 (2014)CrossRef
48.
go back to reference A. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J. Frade, Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms. J. Mater. Chem. A (2017). doi:10.1039/C6TA09860F A. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J. Frade, Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms. J. Mater. Chem. A (2017). doi:10.​1039/​C6TA09860F
49.
go back to reference A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, Boosting thermoelectric performance by controlled defect chemistry engineering in Ta-substituted strontium titanate. Chem. Mater. 27, 4995–5006 (2015)CrossRef A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, Boosting thermoelectric performance by controlled defect chemistry engineering in Ta-substituted strontium titanate. Chem. Mater. 27, 4995–5006 (2015)CrossRef
50.
go back to reference A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution. J. Appl. Phys. 113, 53704 (2013)CrossRef A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution. J. Appl. Phys. 113, 53704 (2013)CrossRef
51.
go back to reference K. Gömann, G. Borchardt, M. Schulz, A. Gömann, W. Maus-Friedrichs, B. Lesage, O. Kaïtasov, S. Hoffmann-Eifert, T. Schneller, Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions. Phys. Chem. Chem. Phys. 7, 2053–2060 (2005)CrossRef K. Gömann, G. Borchardt, M. Schulz, A. Gömann, W. Maus-Friedrichs, B. Lesage, O. Kaïtasov, S. Hoffmann-Eifert, T. Schneller, Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions. Phys. Chem. Chem. Phys. 7, 2053–2060 (2005)CrossRef
52.
go back to reference N.G. Eror, U. Balachandran, Self-compensation in lanthanum-doped strontium titanate. J. Solid State Chem. 40, 85–91 (1981)CrossRef N.G. Eror, U. Balachandran, Self-compensation in lanthanum-doped strontium titanate. J. Solid State Chem. 40, 85–91 (1981)CrossRef
53.
go back to reference M.C. Verbraeken, T. Ramos, K. Agersted, Q. Ma, C.D. Savaniu, B.R. Sudireddy, J.T.S. Irvine, P. Holtappels, F. Tietz, Modified strontium titanates: from defect chemistry to SOFC anodes. RSC Adv. 5, 1168–1180 (2015)CrossRef M.C. Verbraeken, T. Ramos, K. Agersted, Q. Ma, C.D. Savaniu, B.R. Sudireddy, J.T.S. Irvine, P. Holtappels, F. Tietz, Modified strontium titanates: from defect chemistry to SOFC anodes. RSC Adv. 5, 1168–1180 (2015)CrossRef
54.
go back to reference F. Lichtenberg, A. Herrnberger, K. Wiedenmann, Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+2, A′Ak-1BkO3k+1 and AmBm-1O3m. Prog. Solid State Chem. 36, 253–387 (2008)CrossRef F. Lichtenberg, A. Herrnberger, K. Wiedenmann, Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+2, A′Ak-1BkO3k+1 and AmBm-1O3m. Prog. Solid State Chem. 36, 253–387 (2008)CrossRef
55.
go back to reference I. Levin, L.A. Bendersky, T.A. Vanderah, A structural study of the layered perovskite-derived Srn(Ti,Nb)nO3n+2 compounds by transmission electron microscopy. Philos Mag A 80, 411–445 (2000)CrossRef I. Levin, L.A. Bendersky, T.A. Vanderah, A structural study of the layered perovskite-derived Srn(Ti,Nb)nO3n+2 compounds by transmission electron microscopy. Philos Mag A 80, 411–445 (2000)CrossRef
56.
go back to reference J. Canales-Vázquez, M.J. Smith, J.T.S. Irvine, W. Zhou, Studies on the reorganization of extended defects with increasing n in the perovskite-based La4Srn-4TinO3n+2 series. Adv. Funct. Mater. 15, 1000–1008 (2005)CrossRef J. Canales-Vázquez, M.J. Smith, J.T.S. Irvine, W. Zhou, Studies on the reorganization of extended defects with increasing n in the perovskite-based La4Srn-4TinO3n+2 series. Adv. Funct. Mater. 15, 1000–1008 (2005)CrossRef
57.
go back to reference L. Amaral, A.M.R. Senos, P.M. Vilarinho, Sintering kinetic studies in nonstoichiometric strontium titanate ceramics. Mater. Res. Bull. 44, 263–270 (2009)CrossRef L. Amaral, A.M.R. Senos, P.M. Vilarinho, Sintering kinetic studies in nonstoichiometric strontium titanate ceramics. Mater. Res. Bull. 44, 263–270 (2009)CrossRef
58.
go back to reference Y. Liu, P. Sahoo, J.P.A. Makongo, X. Zhou, S.J. Kim, H. Chi, C. Uher, X. Pan, P.F.P. Poudeu, Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. J. Am. Chem. Soc. 135, 7486–7495 (2013)CrossRef Y. Liu, P. Sahoo, J.P.A. Makongo, X. Zhou, S.J. Kim, H. Chi, C. Uher, X. Pan, P.F.P. Poudeu, Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. J. Am. Chem. Soc. 135, 7486–7495 (2013)CrossRef
59.
go back to reference J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)CrossRefMATH J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)CrossRefMATH
60.
go back to reference E.S. Toberer, A. Zevalkink, G.J. Snyder, Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843 (2011)CrossRef E.S. Toberer, A. Zevalkink, G.J. Snyder, Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843 (2011)CrossRef
61.
go back to reference S. McGuire, D.J. Keeble, R.E. Mason, P.G. Coleman, Y. Koutsonas, T.J. Jackson, Variable energy positron beam analysis of vacancy defects in laser ablated SrTiO3 thin films on SrTiO3. J. Appl. Phys. 100, 44109 (2006)CrossRef S. McGuire, D.J. Keeble, R.E. Mason, P.G. Coleman, Y. Koutsonas, T.J. Jackson, Variable energy positron beam analysis of vacancy defects in laser ablated SrTiO3 thin films on SrTiO3. J. Appl. Phys. 100, 44109 (2006)CrossRef
62.
go back to reference D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the termal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992)CrossRef D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the termal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992)CrossRef
63.
go back to reference Y. Su Kim, J. Kim, M. Jee Yoon, et al., Impact of vacancy clusters on characteristic resistance change of nonstoichiometric strontium titanate nano-film. Appl. Phys. Lett. 104, 13501 (2014)CrossRef Y. Su Kim, J. Kim, M. Jee Yoon, et al., Impact of vacancy clusters on characteristic resistance change of nonstoichiometric strontium titanate nano-film. Appl. Phys. Lett. 104, 13501 (2014)CrossRef
64.
go back to reference Y.S. Kim, J. Kim, S.J. Moon, W.S. Choi, Y.J. Chang, J.G. Yoon, J. Yu, J.S. Chung, T.W. Noh, Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films. Appl. Phys. Lett. 94, 202906 (2009)CrossRef Y.S. Kim, J. Kim, S.J. Moon, W.S. Choi, Y.J. Chang, J.G. Yoon, J. Yu, J.S. Chung, T.W. Noh, Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films. Appl. Phys. Lett. 94, 202906 (2009)CrossRef
Metadata
Title
Defects Engineering for Performing SrTiO3-Based Thermoelectric Thin Films: Principles and Selected Approaches
Author
Andrei V. Kovalevsky
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-59906-9_4