Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 3/2022

24-03-2022 | Original Research Article

Deformation Characteristics and Influential Parameters of Iron Coke Hot Briquette During Carbonization Process

Authors: Dong Han, Zhenggen Liu, Mansheng Chu, Yongjie Zhang, Jiwei Bao, Mingyu Wang, Laigeng Cao

Published in: Metallurgical and Materials Transactions B | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iron coke hot briquette (ICHB) is considered as a typical low-carbon ironmaking charge. Much research has been done on its properties including strength, reactivity and post-reaction strength. However, the properties of ICHB in the carbonization process are also very important, which can affect the choice of reactor and the quality of the product. This paper complements the theory of ICHB during the carbonization process. ICHB was prepared with 20 pct iron ore A (referred to as ICHB-A) and iron ore B (referred to as ICHB-B) to study the effect of the reduction process of iron oxide on the deformation ratio and compressive strength of ICHB during carbonization. The main component of iron ore A is Fe3O4 and that of iron ore B is Fe2O3. The results show that Fe2O3 in ICHB-B is reduced at about 500 °C, and more gas is generated to inhibit the contraction of ICHB. However, the compressive strength of ICHB-B during carbonization is higher than that of ICHB-A, which is believed to be related to the closer bonding between hematite and coal. This study also compared the effect of the ratio of iron ore A on ICHB deformation ratio and compressive strength. The results show that the expansion ratio and shrinkage ratio of ICHB decrease with the increase of iron ore A ratio. By analyzing the deformation characteristics of briquette with the same proportion of Al2O3 during carbonization, it is considered that the influence of different proportion of iron ore A on ICHB deformation ration is mainly caused by the inhibition of inert material on the deformation behavior of coal. The iron ore can enhance the compressive strength of coke, but the reinforcing effect decreases with the increase of iron ore ratio. In addition, the influences of carbonization heating rate, forming pressure and particle size of iron ore on ICHB deformation behavior are also included in this study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.Y. Wang, J.L. Zhang, G.W. Wang, and X. Jiang: Chin. Metall., 2018, vol. 28, pp. 1–6. H.Y. Wang, J.L. Zhang, G.W. Wang, and X. Jiang: Chin. Metall., 2018, vol. 28, pp. 1–6.
3.
go back to reference W.J. Tian, H. Li, K. Quan, H. Bai, N. Li, and D.Q. Cang: Energy Metall. Ind., 2020, vol. 39, pp. 3–9. W.J. Tian, H. Li, K. Quan, H. Bai, N. Li, and D.Q. Cang: Energy Metall. Ind., 2020, vol. 39, pp. 3–9.
5.
go back to reference Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 476–84. Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 476–84.
6.
go back to reference M. Jampani, J. Gibson, and P.C. Pistorius: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1290–99.CrossRef M. Jampani, J. Gibson, and P.C. Pistorius: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1290–99.CrossRef
7.
go back to reference S. Paul, S.K. Roy, and P.K. Sen: Metall. Mater. Trans. B., 2017, vol. 44B, pp. 20–27. S. Paul, S.K. Roy, and P.K. Sen: Metall. Mater. Trans. B., 2017, vol. 44B, pp. 20–27.
8.
go back to reference W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, and Z.W. Ying: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1878–95.CrossRef W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, and Z.W. Ying: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1878–95.CrossRef
9.
go back to reference H.T. Wang, M.S. Chu, J.W. Bao, Z.G. Liu, J. Tang, and H.M. Long: Fuel., 2020, vol. 268, pp. 1–11. H.T. Wang, M.S. Chu, J.W. Bao, Z.G. Liu, J. Tang, and H.M. Long: Fuel., 2020, vol. 268, pp. 1–11.
10.
go back to reference S.Z. Shi, Q.W. Dong, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: Iron Steel., 2015, vol. 50, pp. 8–12. S.Z. Shi, Q.W. Dong, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: Iron Steel., 2015, vol. 50, pp. 8–12.
11.
go back to reference S.Z. Shi, C.Q. Sun, X.G. Bi, H.X. Zhang, Q.W. Dong, and Z.L. Lin: Iron Steel., 2014, vol. 49, pp. 7–12. S.Z. Shi, C.Q. Sun, X.G. Bi, H.X. Zhang, Q.W. Dong, and Z.L. Lin: Iron Steel., 2014, vol. 49, pp. 7–12.
12.
go back to reference S.Z. Shi, Z.L. Lin, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: J. Taiyuan Univ. Tech., 2015, vol. 46, pp. 283–87. S.Z. Shi, Z.L. Lin, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: J. Taiyuan Univ. Tech., 2015, vol. 46, pp. 283–87.
13.
go back to reference B. Gao, H. Xiao, D.W. Kong, W.Q. Zhang, and J. Li: Iron Steel., 2016, vol. 51, pp. 19–25. B. Gao, H. Xiao, D.W. Kong, W.Q. Zhang, and J. Li: Iron Steel., 2016, vol. 51, pp. 19–25.
14.
go back to reference S.X. Qiu, S.F. Zhang, G.S. Suo, G.B. Qiu, Y. Cheng, M.L. Hu, X. Xiao, and L.Y. Wen: Fuel., 2020, vol. 260, pp. 1–9.CrossRef S.X. Qiu, S.F. Zhang, G.S. Suo, G.B. Qiu, Y. Cheng, M.L. Hu, X. Xiao, and L.Y. Wen: Fuel., 2020, vol. 260, pp. 1–9.CrossRef
15.
go back to reference H.T. Wang, M.S. Chu, Z.H. Wang, W. Zhao, Z.G. Liu, J. Tang, and Z.W. Ying: JOM., 2018, vol. 70, pp. 1929–36.CrossRef H.T. Wang, M.S. Chu, Z.H. Wang, W. Zhao, Z.G. Liu, J. Tang, and Z.W. Ying: JOM., 2018, vol. 70, pp. 1929–36.CrossRef
16.
go back to reference H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, and Z.W. Ying: Powder Tech., 2018, vol. 328, pp. 318–28.CrossRef H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, and Z.W. Ying: Powder Tech., 2018, vol. 328, pp. 318–28.CrossRef
17.
go back to reference H.T. Wang, M.S. Chu, W. Zhao, R. Wang, Z.G. Liu, and J. Tang: Ironmak. Steelmak., 2016, vol. 43, pp. 571–80.CrossRef H.T. Wang, M.S. Chu, W. Zhao, R. Wang, Z.G. Liu, and J. Tang: Ironmak. Steelmak., 2016, vol. 43, pp. 571–80.CrossRef
18.
go back to reference Z.X. Fu, Z.C. Guo, Z.F. Yuan, and Z. Wang: J. Fuel Chem. Tech., 2005, vol. 33, pp. 525–29. Z.X. Fu, Z.C. Guo, Z.F. Yuan, and Z. Wang: J. Fuel Chem. Tech., 2005, vol. 33, pp. 525–29.
19.
go back to reference Y.F. Zhang, H.R. Zhang, F. Tian, and Y.L. Sun: J. Chin. Soc., 2011, vol. 36, pp. 670–75. Y.F. Zhang, H.R. Zhang, F. Tian, and Y.L. Sun: J. Chin. Soc., 2011, vol. 36, pp. 670–75.
20.
go back to reference Q. Wang, T.K. Zhang, Y.Q. Zhao, S.Q. He, and Y.F. Zhang: Fuel., 2019, vol. 257, p. 116029.CrossRef Q. Wang, T.K. Zhang, Y.Q. Zhao, S.Q. He, and Y.F. Zhang: Fuel., 2019, vol. 257, p. 116029.CrossRef
22.
go back to reference I.V. Miroshnichenko, D.V. Miroshnichenko, I.V. Shulga, Y.S. Balaeva, and A.V. Tsygankov: Coke Chem., 2020, vol. 63, pp. 120–25.CrossRef I.V. Miroshnichenko, D.V. Miroshnichenko, I.V. Shulga, Y.S. Balaeva, and A.V. Tsygankov: Coke Chem., 2020, vol. 63, pp. 120–25.CrossRef
24.
go back to reference J.W. Bao, M.S. Chu, H.T. Wang, Z.G. Liu, D. Han, L.G. Cao, J. Guo, and Z.C. Zhao: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2785–96.CrossRef J.W. Bao, M.S. Chu, H.T. Wang, Z.G. Liu, D. Han, L.G. Cao, J. Guo, and Z.C. Zhao: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2785–96.CrossRef
25.
go back to reference H.T. Wang, M.S. Chu, W. Zhao, Z.G. Liu, and J. Tang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 324–36.CrossRef H.T. Wang, M.S. Chu, W. Zhao, Z.G. Liu, and J. Tang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 324–36.CrossRef
26.
go back to reference S. Halder and R.J. Fruehan: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 809–17.CrossRef S. Halder and R.J. Fruehan: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 809–17.CrossRef
27.
go back to reference J.F. Gu: Coal Chem. Ind., 1996, vol. 1, pp. 37–43. J.F. Gu: Coal Chem. Ind., 1996, vol. 1, pp. 37–43.
28.
go back to reference L. Yu, R.S. Xu, W. Wang, H. Dang, H. Zheng, and Q.G. Liu: J. Iron Steel Res., 2019, vol. 31, pp. 515–21. L. Yu, R.S. Xu, W. Wang, H. Dang, H. Zheng, and Q.G. Liu: J. Iron Steel Res., 2019, vol. 31, pp. 515–21.
30.
go back to reference J.W. Bao, M.S. Chu, D. Han, L.G. Cao, Z.G. Liu, and J. Tang: Steel Res. Int., 2019, vol. 90, pp. 1–9.CrossRef J.W. Bao, M.S. Chu, D. Han, L.G. Cao, Z.G. Liu, and J. Tang: Steel Res. Int., 2019, vol. 90, pp. 1–9.CrossRef
31.
go back to reference T. Yamashita, T. Nakada, and K. Nagata: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 185–91.CrossRef T. Yamashita, T. Nakada, and K. Nagata: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 185–91.CrossRef
32.
go back to reference P. Kaushik and R.J. Fruehan: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 715–25.CrossRef P. Kaushik and R.J. Fruehan: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 715–25.CrossRef
33.
go back to reference H.X. Zhang, X.G. Bi, S.Z. S, Q. W, C.Q. Sun, Y.R. Ma, X.M. Cheng, and P. Li: J. Wuhan Univ. Sci. Tech., 2014, vol. 37, pp. 91–96. H.X. Zhang, X.G. Bi, S.Z. S, Q. W, C.Q. Sun, Y.R. Ma, X.M. Cheng, and P. Li: J. Wuhan Univ. Sci. Tech., 2014, vol. 37, pp. 91–96.
34.
go back to reference R.S. Xu, X.M. Huang, W. Wang, S.L. Deng, H. Zheng, M.M. Song, and F.F. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1526–39.CrossRef R.S. Xu, X.M. Huang, W. Wang, S.L. Deng, H. Zheng, M.M. Song, and F.F. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1526–39.CrossRef
35.
go back to reference B. Ghosh, B.K. Sahoo, P.K. Jha, K.K. Manjhi, J.N. Sahu, and A.K. Varma: Coke Chem., 2020, vol. 63, pp. 294–302.CrossRef B. Ghosh, B.K. Sahoo, P.K. Jha, K.K. Manjhi, J.N. Sahu, and A.K. Varma: Coke Chem., 2020, vol. 63, pp. 294–302.CrossRef
36.
go back to reference N. Chang, Y.P. Gan, and Y.X. Chen: Coal Conv., 2012, vol. 35, pp. 1–5. N. Chang, Y.P. Gan, and Y.X. Chen: Coal Conv., 2012, vol. 35, pp. 1–5.
37.
go back to reference S.X. Qiu, S.F. Zhang, Y. Wu, G.B. Qiu, C.G. Sun, Q.Y. Zhang, J. Dang, L.Y. Wen, M.L. Hu, J. Xu, R.J. Zhu, and C.G. Bai: Fuel., 2018, vol. 232, pp. 374–83.CrossRef S.X. Qiu, S.F. Zhang, Y. Wu, G.B. Qiu, C.G. Sun, Q.Y. Zhang, J. Dang, L.Y. Wen, M.L. Hu, J. Xu, R.J. Zhu, and C.G. Bai: Fuel., 2018, vol. 232, pp. 374–83.CrossRef
Metadata
Title
Deformation Characteristics and Influential Parameters of Iron Coke Hot Briquette During Carbonization Process
Authors
Dong Han
Zhenggen Liu
Mansheng Chu
Yongjie Zhang
Jiwei Bao
Mingyu Wang
Laigeng Cao
Publication date
24-03-2022
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 3/2022
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-022-02473-x

Other articles of this Issue 3/2022

Metallurgical and Materials Transactions B 3/2022 Go to the issue

Premium Partners