Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 3/2022

24.03.2022 | Original Research Article

Deformation Characteristics and Influential Parameters of Iron Coke Hot Briquette During Carbonization Process

verfasst von: Dong Han, Zhenggen Liu, Mansheng Chu, Yongjie Zhang, Jiwei Bao, Mingyu Wang, Laigeng Cao

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Iron coke hot briquette (ICHB) is considered as a typical low-carbon ironmaking charge. Much research has been done on its properties including strength, reactivity and post-reaction strength. However, the properties of ICHB in the carbonization process are also very important, which can affect the choice of reactor and the quality of the product. This paper complements the theory of ICHB during the carbonization process. ICHB was prepared with 20 pct iron ore A (referred to as ICHB-A) and iron ore B (referred to as ICHB-B) to study the effect of the reduction process of iron oxide on the deformation ratio and compressive strength of ICHB during carbonization. The main component of iron ore A is Fe3O4 and that of iron ore B is Fe2O3. The results show that Fe2O3 in ICHB-B is reduced at about 500 °C, and more gas is generated to inhibit the contraction of ICHB. However, the compressive strength of ICHB-B during carbonization is higher than that of ICHB-A, which is believed to be related to the closer bonding between hematite and coal. This study also compared the effect of the ratio of iron ore A on ICHB deformation ratio and compressive strength. The results show that the expansion ratio and shrinkage ratio of ICHB decrease with the increase of iron ore A ratio. By analyzing the deformation characteristics of briquette with the same proportion of Al2O3 during carbonization, it is considered that the influence of different proportion of iron ore A on ICHB deformation ration is mainly caused by the inhibition of inert material on the deformation behavior of coal. The iron ore can enhance the compressive strength of coke, but the reinforcing effect decreases with the increase of iron ore ratio. In addition, the influences of carbonization heating rate, forming pressure and particle size of iron ore on ICHB deformation behavior are also included in this study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.Y. Wang, J.L. Zhang, G.W. Wang, and X. Jiang: Chin. Metall., 2018, vol. 28, pp. 1–6. H.Y. Wang, J.L. Zhang, G.W. Wang, and X. Jiang: Chin. Metall., 2018, vol. 28, pp. 1–6.
2.
3.
Zurück zum Zitat W.J. Tian, H. Li, K. Quan, H. Bai, N. Li, and D.Q. Cang: Energy Metall. Ind., 2020, vol. 39, pp. 3–9. W.J. Tian, H. Li, K. Quan, H. Bai, N. Li, and D.Q. Cang: Energy Metall. Ind., 2020, vol. 39, pp. 3–9.
4.
5.
Zurück zum Zitat Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 476–84. Z.L. Zhang, J.L. Meng, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 476–84.
6.
Zurück zum Zitat M. Jampani, J. Gibson, and P.C. Pistorius: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1290–99.CrossRef M. Jampani, J. Gibson, and P.C. Pistorius: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1290–99.CrossRef
7.
Zurück zum Zitat S. Paul, S.K. Roy, and P.K. Sen: Metall. Mater. Trans. B., 2017, vol. 44B, pp. 20–27. S. Paul, S.K. Roy, and P.K. Sen: Metall. Mater. Trans. B., 2017, vol. 44B, pp. 20–27.
8.
Zurück zum Zitat W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, and Z.W. Ying: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1878–95.CrossRef W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, and Z.W. Ying: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1878–95.CrossRef
9.
Zurück zum Zitat H.T. Wang, M.S. Chu, J.W. Bao, Z.G. Liu, J. Tang, and H.M. Long: Fuel., 2020, vol. 268, pp. 1–11. H.T. Wang, M.S. Chu, J.W. Bao, Z.G. Liu, J. Tang, and H.M. Long: Fuel., 2020, vol. 268, pp. 1–11.
10.
Zurück zum Zitat S.Z. Shi, Q.W. Dong, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: Iron Steel., 2015, vol. 50, pp. 8–12. S.Z. Shi, Q.W. Dong, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: Iron Steel., 2015, vol. 50, pp. 8–12.
11.
Zurück zum Zitat S.Z. Shi, C.Q. Sun, X.G. Bi, H.X. Zhang, Q.W. Dong, and Z.L. Lin: Iron Steel., 2014, vol. 49, pp. 7–12. S.Z. Shi, C.Q. Sun, X.G. Bi, H.X. Zhang, Q.W. Dong, and Z.L. Lin: Iron Steel., 2014, vol. 49, pp. 7–12.
12.
Zurück zum Zitat S.Z. Shi, Z.L. Lin, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: J. Taiyuan Univ. Tech., 2015, vol. 46, pp. 283–87. S.Z. Shi, Z.L. Lin, X.G. Bi, P. Li, Y.H. Luo, and G.E. Wang: J. Taiyuan Univ. Tech., 2015, vol. 46, pp. 283–87.
13.
Zurück zum Zitat B. Gao, H. Xiao, D.W. Kong, W.Q. Zhang, and J. Li: Iron Steel., 2016, vol. 51, pp. 19–25. B. Gao, H. Xiao, D.W. Kong, W.Q. Zhang, and J. Li: Iron Steel., 2016, vol. 51, pp. 19–25.
14.
Zurück zum Zitat S.X. Qiu, S.F. Zhang, G.S. Suo, G.B. Qiu, Y. Cheng, M.L. Hu, X. Xiao, and L.Y. Wen: Fuel., 2020, vol. 260, pp. 1–9.CrossRef S.X. Qiu, S.F. Zhang, G.S. Suo, G.B. Qiu, Y. Cheng, M.L. Hu, X. Xiao, and L.Y. Wen: Fuel., 2020, vol. 260, pp. 1–9.CrossRef
15.
Zurück zum Zitat H.T. Wang, M.S. Chu, Z.H. Wang, W. Zhao, Z.G. Liu, J. Tang, and Z.W. Ying: JOM., 2018, vol. 70, pp. 1929–36.CrossRef H.T. Wang, M.S. Chu, Z.H. Wang, W. Zhao, Z.G. Liu, J. Tang, and Z.W. Ying: JOM., 2018, vol. 70, pp. 1929–36.CrossRef
16.
Zurück zum Zitat H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, and Z.W. Ying: Powder Tech., 2018, vol. 328, pp. 318–28.CrossRef H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, and Z.W. Ying: Powder Tech., 2018, vol. 328, pp. 318–28.CrossRef
17.
Zurück zum Zitat H.T. Wang, M.S. Chu, W. Zhao, R. Wang, Z.G. Liu, and J. Tang: Ironmak. Steelmak., 2016, vol. 43, pp. 571–80.CrossRef H.T. Wang, M.S. Chu, W. Zhao, R. Wang, Z.G. Liu, and J. Tang: Ironmak. Steelmak., 2016, vol. 43, pp. 571–80.CrossRef
18.
Zurück zum Zitat Z.X. Fu, Z.C. Guo, Z.F. Yuan, and Z. Wang: J. Fuel Chem. Tech., 2005, vol. 33, pp. 525–29. Z.X. Fu, Z.C. Guo, Z.F. Yuan, and Z. Wang: J. Fuel Chem. Tech., 2005, vol. 33, pp. 525–29.
19.
Zurück zum Zitat Y.F. Zhang, H.R. Zhang, F. Tian, and Y.L. Sun: J. Chin. Soc., 2011, vol. 36, pp. 670–75. Y.F. Zhang, H.R. Zhang, F. Tian, and Y.L. Sun: J. Chin. Soc., 2011, vol. 36, pp. 670–75.
20.
Zurück zum Zitat Q. Wang, T.K. Zhang, Y.Q. Zhao, S.Q. He, and Y.F. Zhang: Fuel., 2019, vol. 257, p. 116029.CrossRef Q. Wang, T.K. Zhang, Y.Q. Zhao, S.Q. He, and Y.F. Zhang: Fuel., 2019, vol. 257, p. 116029.CrossRef
21.
22.
Zurück zum Zitat I.V. Miroshnichenko, D.V. Miroshnichenko, I.V. Shulga, Y.S. Balaeva, and A.V. Tsygankov: Coke Chem., 2020, vol. 63, pp. 120–25.CrossRef I.V. Miroshnichenko, D.V. Miroshnichenko, I.V. Shulga, Y.S. Balaeva, and A.V. Tsygankov: Coke Chem., 2020, vol. 63, pp. 120–25.CrossRef
24.
Zurück zum Zitat J.W. Bao, M.S. Chu, H.T. Wang, Z.G. Liu, D. Han, L.G. Cao, J. Guo, and Z.C. Zhao: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2785–96.CrossRef J.W. Bao, M.S. Chu, H.T. Wang, Z.G. Liu, D. Han, L.G. Cao, J. Guo, and Z.C. Zhao: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2785–96.CrossRef
25.
Zurück zum Zitat H.T. Wang, M.S. Chu, W. Zhao, Z.G. Liu, and J. Tang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 324–36.CrossRef H.T. Wang, M.S. Chu, W. Zhao, Z.G. Liu, and J. Tang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 324–36.CrossRef
26.
Zurück zum Zitat S. Halder and R.J. Fruehan: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 809–17.CrossRef S. Halder and R.J. Fruehan: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 809–17.CrossRef
27.
Zurück zum Zitat J.F. Gu: Coal Chem. Ind., 1996, vol. 1, pp. 37–43. J.F. Gu: Coal Chem. Ind., 1996, vol. 1, pp. 37–43.
28.
Zurück zum Zitat L. Yu, R.S. Xu, W. Wang, H. Dang, H. Zheng, and Q.G. Liu: J. Iron Steel Res., 2019, vol. 31, pp. 515–21. L. Yu, R.S. Xu, W. Wang, H. Dang, H. Zheng, and Q.G. Liu: J. Iron Steel Res., 2019, vol. 31, pp. 515–21.
29.
30.
Zurück zum Zitat J.W. Bao, M.S. Chu, D. Han, L.G. Cao, Z.G. Liu, and J. Tang: Steel Res. Int., 2019, vol. 90, pp. 1–9.CrossRef J.W. Bao, M.S. Chu, D. Han, L.G. Cao, Z.G. Liu, and J. Tang: Steel Res. Int., 2019, vol. 90, pp. 1–9.CrossRef
31.
Zurück zum Zitat T. Yamashita, T. Nakada, and K. Nagata: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 185–91.CrossRef T. Yamashita, T. Nakada, and K. Nagata: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 185–91.CrossRef
32.
Zurück zum Zitat P. Kaushik and R.J. Fruehan: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 715–25.CrossRef P. Kaushik and R.J. Fruehan: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 715–25.CrossRef
33.
Zurück zum Zitat H.X. Zhang, X.G. Bi, S.Z. S, Q. W, C.Q. Sun, Y.R. Ma, X.M. Cheng, and P. Li: J. Wuhan Univ. Sci. Tech., 2014, vol. 37, pp. 91–96. H.X. Zhang, X.G. Bi, S.Z. S, Q. W, C.Q. Sun, Y.R. Ma, X.M. Cheng, and P. Li: J. Wuhan Univ. Sci. Tech., 2014, vol. 37, pp. 91–96.
34.
Zurück zum Zitat R.S. Xu, X.M. Huang, W. Wang, S.L. Deng, H. Zheng, M.M. Song, and F.F. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1526–39.CrossRef R.S. Xu, X.M. Huang, W. Wang, S.L. Deng, H. Zheng, M.M. Song, and F.F. Wang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1526–39.CrossRef
35.
Zurück zum Zitat B. Ghosh, B.K. Sahoo, P.K. Jha, K.K. Manjhi, J.N. Sahu, and A.K. Varma: Coke Chem., 2020, vol. 63, pp. 294–302.CrossRef B. Ghosh, B.K. Sahoo, P.K. Jha, K.K. Manjhi, J.N. Sahu, and A.K. Varma: Coke Chem., 2020, vol. 63, pp. 294–302.CrossRef
36.
Zurück zum Zitat N. Chang, Y.P. Gan, and Y.X. Chen: Coal Conv., 2012, vol. 35, pp. 1–5. N. Chang, Y.P. Gan, and Y.X. Chen: Coal Conv., 2012, vol. 35, pp. 1–5.
37.
Zurück zum Zitat S.X. Qiu, S.F. Zhang, Y. Wu, G.B. Qiu, C.G. Sun, Q.Y. Zhang, J. Dang, L.Y. Wen, M.L. Hu, J. Xu, R.J. Zhu, and C.G. Bai: Fuel., 2018, vol. 232, pp. 374–83.CrossRef S.X. Qiu, S.F. Zhang, Y. Wu, G.B. Qiu, C.G. Sun, Q.Y. Zhang, J. Dang, L.Y. Wen, M.L. Hu, J. Xu, R.J. Zhu, and C.G. Bai: Fuel., 2018, vol. 232, pp. 374–83.CrossRef
Metadaten
Titel
Deformation Characteristics and Influential Parameters of Iron Coke Hot Briquette During Carbonization Process
verfasst von
Dong Han
Zhenggen Liu
Mansheng Chu
Yongjie Zhang
Jiwei Bao
Mingyu Wang
Laigeng Cao
Publikationsdatum
24.03.2022
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 3/2022
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-022-02473-x

Weitere Artikel der Ausgabe 3/2022

Metallurgical and Materials Transactions B 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.