Skip to main content
Top
Published in: Metallography, Microstructure, and Analysis 2/2019

21-02-2019 | Technical Article

Delta (δ) Ferrite Formation in the Welds of Aluminized 9Cr-1Mo Steels

Authors: A. B. Zala, N. I. Jamnapara, V. J. Badheka, C. Sasmal, S. Sam, M. Ranjan

Published in: Metallography, Microstructure, and Analysis | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Delta (δ) ferrite phase has several detrimental effects on mechanical properties such as toughness, creep, impact and ductility. It is necessary to examine δ-ferrite content in the weld zone of aluminized coated steels. This manuscript presents the investigation of δ-ferrite formation in the weld of aluminized P91 steels. The welds were prepared with different heat inputs by varying the weld speed at constant current by autogenous Tungsten Inert Gas (TIG) welding process. The concentration of Al in the weld zone may favor δ-ferrite formation during the welding as Al is a ferrite former. Hence, the weld zone prepared at maximum heat inputs was compared for both coated and bare P91 samples. Microstructures were examined and correlated with the temperatures and cooling curve measured during welding. The various empirical formulae such as Schneider, Schaeffler, Newhouse, and Kaltenhauser were used to predict the δ-ferrite formation based on the chemical composition of weld metal obtained with the help of spark emission spectroscopy. Among these, Kaltenhauser’s equation is more accurate for aluminized coated P91 steels. X-ray diffraction, optical microscopy, scanning electron microscopy, and microhardness measurement were done to analyze and predict the shape and morphology of δ-ferrite for coated steel and bare P91 steels. The investigation indicates that higher heat input (~ 2.12 kJ/mm) for coated steel and Al concentration (~ 0.19%) in the weld zone caused the formation of δ-ferrites in various shapes such as polygonal and isolate islands and it has an average volume fraction of ~ 5.09%. The average microhardness values were ~ 396–410 Hv for martensitic laths, while it was ~ 192–198 Hv for delta ferrite which is 52% lower.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Coussement, A. Dhooge, M. de Witte, R. Dobbelaere, E. van der Donckt, High temperature properties of improved 9% Cr steel weldments. Int. J. Press. Vessels Pip. 45(2), 163–178 (1991)CrossRef C. Coussement, A. Dhooge, M. de Witte, R. Dobbelaere, E. van der Donckt, High temperature properties of improved 9% Cr steel weldments. Int. J. Press. Vessels Pip. 45(2), 163–178 (1991)CrossRef
2.
go back to reference F. Abe, Alloy Design of Aduances Ferritic Steels for 659 C USC Boilers, in Conf, Proc. Advanced Heat Resistant Steel for Power Generation. San Sebastian. Spain. University Press, Cambridge. UK, (1998), pp. 84–87 F. Abe, Alloy Design of Aduances Ferritic Steels for 659 C USC Boilers, in Conf, Proc. Advanced Heat Resistant Steel for Power Generation. San Sebastian. Spain. University Press, Cambridge. UK, (1998), pp. 84–87
3.
go back to reference R.L. Klueh, D.R. Harries, High Chromium Ferritic and Martensitic Steels for Nuclear Applications (ASTM International, West Conshohocken, PA, 2001) R.L. Klueh, D.R. Harries, High Chromium Ferritic and Martensitic Steels for Nuclear Applications (ASTM International, West Conshohocken, PA, 2001)
4.
go back to reference S. Mannan, S. Chetal, B. Raj, S. Bhoje, Selection of materials for prototype fast breeder reactor. Trans.-Indian Inst. Metals 56(2), 155–178 (2003) S. Mannan, S. Chetal, B. Raj, S. Bhoje, Selection of materials for prototype fast breeder reactor. Trans.-Indian Inst. Metals 56(2), 155–178 (2003)
5.
go back to reference H. Yang, Q. Zhan, W. Zhao, X. Yuan, Y. Hu, Z. Han, Study of an iron-aluminide and alumina tritium barrier coating. J. Nucl. Mater. 417(1), 1237–1240 (2011)CrossRef H. Yang, Q. Zhan, W. Zhao, X. Yuan, Y. Hu, Z. Han, Study of an iron-aluminide and alumina tritium barrier coating. J. Nucl. Mater. 417(1), 1237–1240 (2011)CrossRef
6.
go back to reference Y. Ueki, T. Kunugi, N.B. Morley, M.A. Abdou, Electrical insulation test of alumina coating fabricated by sol–gel method in molten PbLi pool. Fusion Eng. Des. 85(10), 1824–1828 (2010)CrossRef Y. Ueki, T. Kunugi, N.B. Morley, M.A. Abdou, Electrical insulation test of alumina coating fabricated by sol–gel method in molten PbLi pool. Fusion Eng. Des. 85(10), 1824–1828 (2010)CrossRef
7.
go back to reference W. Krauss, J. Konys, N. Holstein, H. Zimmermann, Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets. J. Nucl. Mater. 417(1), 1233–1236 (2011)CrossRef W. Krauss, J. Konys, N. Holstein, H. Zimmermann, Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets. J. Nucl. Mater. 417(1), 1233–1236 (2011)CrossRef
8.
go back to reference A. Aiello, I. Ricapito, G. Benamati, A. Ciampichetti, Qualification of tritium permeation barriers in liquid Pb–17Li. Fusion Eng. Des. 69(1), 245–252 (2003)CrossRef A. Aiello, I. Ricapito, G. Benamati, A. Ciampichetti, Qualification of tritium permeation barriers in liquid Pb–17Li. Fusion Eng. Des. 69(1), 245–252 (2003)CrossRef
9.
go back to reference N. Jamnapara, D. Avtani, N. Chauhan, P. Raole, S. Mukherjee, A. Khanna, Effect of Si on morphology of alumina scales. Surf. Eng. 28(9), 693–699 (2012)CrossRef N. Jamnapara, D. Avtani, N. Chauhan, P. Raole, S. Mukherjee, A. Khanna, Effect of Si on morphology of alumina scales. Surf. Eng. 28(9), 693–699 (2012)CrossRef
10.
go back to reference N. Jamnapara, S. Frangini, J. Alphonsa, N. Chauhan, S. Mukherjee, Comparative analysis of insulating properties of plasma and thermally grown alumina films on electrospark aluminide coated 9Cr steels. Surf. Coat. Technol. 266, 146–150 (2015)CrossRef N. Jamnapara, S. Frangini, J. Alphonsa, N. Chauhan, S. Mukherjee, Comparative analysis of insulating properties of plasma and thermally grown alumina films on electrospark aluminide coated 9Cr steels. Surf. Coat. Technol. 266, 146–150 (2015)CrossRef
11.
go back to reference N. Jamnapara, S. Mukherjee, A. Khanna, Phase transformation of alumina coating by plasma assisted tempering of aluminized P91 steels. J. Nucl. Mater. 464, 73–79 (2015)CrossRef N. Jamnapara, S. Mukherjee, A. Khanna, Phase transformation of alumina coating by plasma assisted tempering of aluminized P91 steels. J. Nucl. Mater. 464, 73–79 (2015)CrossRef
12.
go back to reference N. Jamnapara, V. Nayak, D. Avtani, N. Chauhan, D. Panda, S. Gupta, K. Kalaria, N. Vaghela, S. Mukherjee, A. Khanna, Al2O3 films grown by glow discharge plasma aluminising. Surf. Eng. 30(7), 467–474 (2014)CrossRef N. Jamnapara, V. Nayak, D. Avtani, N. Chauhan, D. Panda, S. Gupta, K. Kalaria, N. Vaghela, S. Mukherjee, A. Khanna, Al2O3 films grown by glow discharge plasma aluminising. Surf. Eng. 30(7), 467–474 (2014)CrossRef
13.
go back to reference N.I. Jamnapara, S. Frangini, D. Avtani, V. Nayak, N. Chauhan, G. Jhala, S. Mukherjee, A. Khanna, Microstructural studies of electrospark deposited aluminide coatings on 9Cr steels. Surf. Eng. 28(9), 700–704 (2012)CrossRef N.I. Jamnapara, S. Frangini, D. Avtani, V. Nayak, N. Chauhan, G. Jhala, S. Mukherjee, A. Khanna, Microstructural studies of electrospark deposited aluminide coatings on 9Cr steels. Surf. Eng. 28(9), 700–704 (2012)CrossRef
14.
go back to reference N.I. Jamnapara, A.S. Sree, E.R. Kumar, S. Mukherjee, A. Khanna, Compatibility study of plasma grown alumina coating with Pb–17Li under static conditions. J. Nucl. Mater. 455(1), 612–617 (2014)CrossRef N.I. Jamnapara, A.S. Sree, E.R. Kumar, S. Mukherjee, A. Khanna, Compatibility study of plasma grown alumina coating with Pb–17Li under static conditions. J. Nucl. Mater. 455(1), 612–617 (2014)CrossRef
15.
go back to reference A. Mein, G. Fourlaris, D. Crowther, P. Evans, The influence of aluminium on the ferrite formation and microstructural development in hot rolled dual-phase steel. Mater. Charact. 64, 69–78 (2012)CrossRef A. Mein, G. Fourlaris, D. Crowther, P. Evans, The influence of aluminium on the ferrite formation and microstructural development in hot rolled dual-phase steel. Mater. Charact. 64, 69–78 (2012)CrossRef
16.
go back to reference P. Bertin, O. Dubet, S. Gadrey, F. Richard, Method For Arc-Welding Aluminum-Coated Metal Parts Using An Inert Gas Containing Nitrogen, ed., Google Patents, 2011 P. Bertin, O. Dubet, S. Gadrey, F. Richard, Method For Arc-Welding Aluminum-Coated Metal Parts Using An Inert Gas Containing Nitrogen, ed., Google Patents, 2011
17.
go back to reference P. Bertin, O. Dubet, S. Gadrey, F. Richard, Method For Arc-Welding Aluminum-Coated Metal Parts Using Oxidizing Gas, ed., Google Patents, 2011 P. Bertin, O. Dubet, S. Gadrey, F. Richard, Method For Arc-Welding Aluminum-Coated Metal Parts Using Oxidizing Gas, ed., Google Patents, 2011
18.
go back to reference F. Briand, O. Dubet, Hybrid Arc/Laser-Welding Method For Aluminized Steel Part Using A Gas Including Nitrogen And/Or Oxygen, ed., Google Patents, 2011 F. Briand, O. Dubet, Hybrid Arc/Laser-Welding Method For Aluminized Steel Part Using A Gas Including Nitrogen And/Or Oxygen, ed., Google Patents, 2011
19.
go back to reference J. Onoro, Martensite microstructure of 9–12% Cr steels weld metals. J. Mater. Process. Technol. 180(1), 137–142 (2006)CrossRef J. Onoro, Martensite microstructure of 9–12% Cr steels weld metals. J. Mater. Process. Technol. 180(1), 137–142 (2006)CrossRef
20.
go back to reference P. Wang, S. Lu, N. Xiao, D. Li, Y. Li, Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater. Sci. Eng. A 527(13), 3210–3216 (2010)CrossRef P. Wang, S. Lu, N. Xiao, D. Li, Y. Li, Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater. Sci. Eng. A 527(13), 3210–3216 (2010)CrossRef
21.
go back to reference K. Anderko, L. Schäfer, E. Materna-Morris, Effect of the δ-ferrite phase on the impact, properties of martensitic chromium steels. J. Nucl. Mater. 179, 492–495 (1991)CrossRef K. Anderko, L. Schäfer, E. Materna-Morris, Effect of the δ-ferrite phase on the impact, properties of martensitic chromium steels. J. Nucl. Mater. 179, 492–495 (1991)CrossRef
22.
go back to reference B. Arivazhagan, G. Srinivasan, S. Albert, A. Bhaduri, A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process. Fusion Eng. Des. 86(2), 192–197 (2011)CrossRef B. Arivazhagan, G. Srinivasan, S. Albert, A. Bhaduri, A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process. Fusion Eng. Des. 86(2), 192–197 (2011)CrossRef
23.
go back to reference S. Sam, C. Das, V. Ramasubbu, S. Albert, A. Bhaduri, T. Jayakumar, E.R. Kumar, Delta ferrite in the weld metal of reduced activation ferritic martensitic steel. J. Nucl. Mater. 455(1), 343–348 (2014)CrossRef S. Sam, C. Das, V. Ramasubbu, S. Albert, A. Bhaduri, T. Jayakumar, E.R. Kumar, Delta ferrite in the weld metal of reduced activation ferritic martensitic steel. J. Nucl. Mater. 455(1), 343–348 (2014)CrossRef
24.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Dissimilar joining of CFEF steels using autogenous tungsten-inert gas welding and gas tungsten arc welding and their effect on δ-ferrite evolution and mechanical properties. J. Manuf. Process. 31, 247–259 (2018)CrossRef C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Dissimilar joining of CFEF steels using autogenous tungsten-inert gas welding and gas tungsten arc welding and their effect on δ-ferrite evolution and mechanical properties. J. Manuf. Process. 31, 247–259 (2018)CrossRef
25.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint. Mater. Sci. Eng. A 712, 720–737 (2018)CrossRef C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint. Mater. Sci. Eng. A 712, 720–737 (2018)CrossRef
26.
go back to reference L.O. Vilarinho, V. Kumar, B. Lucas, S. Raghunathan, in JOM-15-Fifteenth International Conference on the Joining of Materials and 6th International Conference on Education in Welding (ICEW 6), Helsingor, Denmark (2009) L.O. Vilarinho, V. Kumar, B. Lucas, S. Raghunathan, in JOM-15-Fifteenth International Conference on the Joining of Materials and 6th International Conference on Education in Welding (ICEW 6), Helsingor, Denmark (2009)
27.
go back to reference J. Onoro, Weld metal microstructure analysis of 9–12%Cr steels. Int. J. Press. Vessels Pip. 83(7), 540–545 (2006)CrossRef J. Onoro, Weld metal microstructure analysis of 9–12%Cr steels. Int. J. Press. Vessels Pip. 83(7), 540–545 (2006)CrossRef
28.
go back to reference C. Pandey, A. Giri, M. Mahapatra, Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties. Mater. Sci. Eng. A 664, 58–74 (2016)CrossRef C. Pandey, A. Giri, M. Mahapatra, Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties. Mater. Sci. Eng. A 664, 58–74 (2016)CrossRef
29.
go back to reference B. Arivazhagan, M. Vasudevan, A comparative study on the effect of GTAW processes on the microstructure and mechanical properties of P91 steel weld joints. J. Manuf. Process. 16(2), 305–311 (2014)CrossRef B. Arivazhagan, M. Vasudevan, A comparative study on the effect of GTAW processes on the microstructure and mechanical properties of P91 steel weld joints. J. Manuf. Process. 16(2), 305–311 (2014)CrossRef
30.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Autogenous tungsten inert gas and gas tungsten arc with filler welding of dissimilar P91 and P92 steels. J. Press. Vessel Technol. 140(2), 021407 (2018)CrossRef C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Autogenous tungsten inert gas and gas tungsten arc with filler welding of dissimilar P91 and P92 steels. J. Press. Vessel Technol. 140(2), 021407 (2018)CrossRef
31.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, R. Vidyarthy, H. Narang, A brief study on δ-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties. Arch. Civil Mech. Eng. 18(3), 713–722 (2018)CrossRef C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, R. Vidyarthy, H. Narang, A brief study on δ-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties. Arch. Civil Mech. Eng. 18(3), 713–722 (2018)CrossRef
Metadata
Title
Delta (δ) Ferrite Formation in the Welds of Aluminized 9Cr-1Mo Steels
Authors
A. B. Zala
N. I. Jamnapara
V. J. Badheka
C. Sasmal
S. Sam
M. Ranjan
Publication date
21-02-2019
Publisher
Springer US
Published in
Metallography, Microstructure, and Analysis / Issue 2/2019
Print ISSN: 2192-9262
Electronic ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-019-00528-1

Other articles of this Issue 2/2019

Metallography, Microstructure, and Analysis 2/2019 Go to the issue

Premium Partners