Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 17/2019

29-08-2019

Design, analysis, and optimization of a magnetoelectric actuator using regression modeling, numerical simulation and metaheuristics algorithm

Authors: M. Sadeghi, Y. Hojjat, M. Khodaei

Published in: Journal of Materials Science: Materials in Electronics | Issue 17/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, a new method was proposed for the design of composite magnetoelectric actuator. Design of experiment (DOE) was utilized to investigate the mutual effect of geometric parameters. Moreover, the effect of impedance phase angle, magnetic field, and bias field were studied through finite element (FE) modeling. Resonance frequency, displacement value, magnetoelectric coefficient, and mode shape were considered as response variables. Analysis of variance (ANOVA), regression modeling and response surface method (RSM) were used to investigate the pair-wise effect of input parameters on the response variables. ANOVA results showed that the magnetoelectric length and piezoelectric thickness are the most important parameters affecting the magnetoelectric performance. The optimization process was performed using Metaheuristics algorithm. Optimum results were verified using magnetoelectric measurement setup and Laser Doppler Vibrometry device. The accuracy of the FE model in resonance frequency prediction was estimated at 97%. The prediction error of the FE model for the magnetoelectric voltage parameter was 14.6%, which was about 12.9% better than the regression model. The confirmation test showed that the regression modeling can only predict magnetoelectric behavior and for determining magnetoelectric performance, a precise FE model would be more reliable. Such proposed optimization technique can be used in the design of magnetoelectric composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference J. Zhang, P. Li, Y. Wen, W. He, A. Yang, C. Lu, Shear-mode self-biased magnetostrictive/piezoelectric laminate multiferroic heterostructures for magnetic field detecting and energy harvesting. Sens. Actuators A 214, 149–155 (2014)CrossRef J. Zhang, P. Li, Y. Wen, W. He, A. Yang, C. Lu, Shear-mode self-biased magnetostrictive/piezoelectric laminate multiferroic heterostructures for magnetic field detecting and energy harvesting. Sens. Actuators A 214, 149–155 (2014)CrossRef
2.
go back to reference D. Huang, C. Lu, H. Bing, Self-biased magnetoelectric coupling characteristics of three-phase composite transducers with nanocrystallin soft magnetic alloy. Appl. Phys. A 120(1), 115–120 (2015)CrossRef D. Huang, C. Lu, H. Bing, Self-biased magnetoelectric coupling characteristics of three-phase composite transducers with nanocrystallin soft magnetic alloy. Appl. Phys. A 120(1), 115–120 (2015)CrossRef
3.
go back to reference S. Reis et al., Optimized anisotropic magnetoelectric response of Fe61.6Co16.4Si10.8B11.2/PVDF/Fe61.6Co16.4Si10.8B11.2laminates for AC/DC magnetic field sensing. Smart Mater. Struct. 25(5), 055050 (2016)CrossRef S. Reis et al., Optimized anisotropic magnetoelectric response of Fe61.6Co16.4Si10.8B11.2/PVDF/Fe61.6Co16.4Si10.8B11.2laminates for AC/DC magnetic field sensing. Smart Mater. Struct. 25(5), 055050 (2016)CrossRef
4.
go back to reference N. Castro, S. Reis, M.P. Silva, V. Correia, S. Lanceros-Mendez, P. Martins, Development of a contactless DC current sensor with high linearity and sensitivity based on the magnetoelectric effect. Smart Mater. Struct. 27(6), 065012 (2018)CrossRef N. Castro, S. Reis, M.P. Silva, V. Correia, S. Lanceros-Mendez, P. Martins, Development of a contactless DC current sensor with high linearity and sensitivity based on the magnetoelectric effect. Smart Mater. Struct. 27(6), 065012 (2018)CrossRef
5.
go back to reference W. Huang et al., “Ferroelectric domain switching dynamics and memristive behaviors in BiFeO3-based magnetoelectric heterojunctions,” Journal of Physics D: Applied Physics, vol. 51, no. 23, p. 234005, 2018/05/17 2018 W. Huang et al., “Ferroelectric domain switching dynamics and memristive behaviors in BiFeO3-based magnetoelectric heterojunctions,” Journal of Physics D: Applied Physics, vol. 51, no. 23, p. 234005, 2018/05/17 2018
6.
go back to reference J. Zhang et al., Theory of tunable magnetoelectric inductors in ferrite-piezoelectric layered composite. J. Phys. D 52(16), 165001 (2019)CrossRef J. Zhang et al., Theory of tunable magnetoelectric inductors in ferrite-piezoelectric layered composite. J. Phys. D 52(16), 165001 (2019)CrossRef
7.
go back to reference C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions,”. J. Appl. Phys. 103(3), 1 (2008)CrossRef C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions,”. J. Appl. Phys. 103(3), 1 (2008)CrossRef
8.
go back to reference J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)CrossRef J. Ma, J. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)CrossRef
9.
go back to reference U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. Devreugd, Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl. Phys. A 78(1), 33–36 (2004)CrossRef U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. Devreugd, Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl. Phys. A 78(1), 33–36 (2004)CrossRef
10.
go back to reference K. Bi, Y.G. Wang, W. Wu, Tunable resonance frequency of magnetoelectric layered composites. Sens. Actuators A 166(1), 48–51 (2011)CrossRef K. Bi, Y.G. Wang, W. Wu, Tunable resonance frequency of magnetoelectric layered composites. Sens. Actuators A 166(1), 48–51 (2011)CrossRef
11.
go back to reference H. Palneedi et al., Highly tunable magnetoelectric response in dimensional gradient laminate composites of Fe-Ga alloy and Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 single crystal. J. Alloys Compd. 765, 764–770 (2018)CrossRef H. Palneedi et al., Highly tunable magnetoelectric response in dimensional gradient laminate composites of Fe-Ga alloy and Pb(Mg1/3Nb2/3)O3-Pb(Zr, Ti)O3 single crystal. J. Alloys Compd. 765, 764–770 (2018)CrossRef
12.
go back to reference T.I. Muchenik, E.J. Barbero, Prediction of extrinsic charge, voltage, and work-conversion factors for laminated magnetoelectric composites. Smart Mater. Struct. 25(1), 015006 (2015)CrossRef T.I. Muchenik, E.J. Barbero, Prediction of extrinsic charge, voltage, and work-conversion factors for laminated magnetoelectric composites. Smart Mater. Struct. 25(1), 015006 (2015)CrossRef
13.
go back to reference E. Freeman et al., Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field. Smart Mater. Struct. 26(8), 085038 (2017)CrossRef E. Freeman et al., Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field. Smart Mater. Struct. 26(8), 085038 (2017)CrossRef
14.
go back to reference A.-P. Wang et al., Influence of composition ratio on ferroelectric, magnetic and magnetoelectric properties of PMN–PT/CFO composite thin films. J. Mater. Sci.: Mater. Electron. 29(12), 10164–10169 (2018) A.-P. Wang et al., Influence of composition ratio on ferroelectric, magnetic and magnetoelectric properties of PMN–PT/CFO composite thin films. J. Mater. Sci.: Mater. Electron. 29(12), 10164–10169 (2018)
15.
go back to reference L. Chen, Y. Wang, The effects of the soft magnetic alloys’ material characteristics on resonant magnetoelectric coupling for magnetostrictive/piezoelectric composites. Smart Mater. Struct. 28(4), 045003 (2019)CrossRef L. Chen, Y. Wang, The effects of the soft magnetic alloys’ material characteristics on resonant magnetoelectric coupling for magnetostrictive/piezoelectric composites. Smart Mater. Struct. 28(4), 045003 (2019)CrossRef
16.
go back to reference M.P. Silva, P. Martins, A. Lasheras, J. Gutiérrez, J.M. Barandiarán, S. Lanceros-Mendez, Size effects on the magnetoelectric response on PVDF/Vitrovac 4040 laminate composites. J. Magn. Magn. Mater. 377, 29–33 (2015)CrossRef M.P. Silva, P. Martins, A. Lasheras, J. Gutiérrez, J.M. Barandiarán, S. Lanceros-Mendez, Size effects on the magnetoelectric response on PVDF/Vitrovac 4040 laminate composites. J. Magn. Magn. Mater. 377, 29–33 (2015)CrossRef
17.
go back to reference L. Chen, P. Li, Y.M. Wen, Y. Zhu, Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites. Chin. Phys. B 22(7), 1–5 (2013) L. Chen, P. Li, Y.M. Wen, Y. Zhu, Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites. Chin. Phys. B 22(7), 1–5 (2013)
18.
go back to reference S. Dinesh Kumar, J. Magesh, V. Subramanian, Tuning of bandwidth by superposition of bending and radial resonance modes in bilayer laminate composite. Mater. Des. 122, 315–321 (2017)CrossRef S. Dinesh Kumar, J. Magesh, V. Subramanian, Tuning of bandwidth by superposition of bending and radial resonance modes in bilayer laminate composite. Mater. Des. 122, 315–321 (2017)CrossRef
19.
go back to reference L. Chen, P. Li, Y. Wen, Y. Zhu, Resonance magnetoelectric couplings of piezoelectric ceramic and ferromagnetic constant-elasticity alloy composites with different layer structures. J. Alloys Compd. 555, 156–160 (2013)CrossRef L. Chen, P. Li, Y. Wen, Y. Zhu, Resonance magnetoelectric couplings of piezoelectric ceramic and ferromagnetic constant-elasticity alloy composites with different layer structures. J. Alloys Compd. 555, 156–160 (2013)CrossRef
20.
go back to reference S. Hohenberger et al., Effect of double layer thickness on magnetoelectric coupling in multiferroic BaTiO3-Bi0.95Gd0.05FeO3 multilayers. J. Phys. D 51(18), 184002 (2018)CrossRef S. Hohenberger et al., Effect of double layer thickness on magnetoelectric coupling in multiferroic BaTiO3-Bi0.95Gd0.05FeO3 multilayers. J. Phys. D 51(18), 184002 (2018)CrossRef
21.
go back to reference C. Tang, C. Lu, Strong self-biased magnetoelectric charge coupling in a homogenous laminate stack for magnetic sensor. J. Alloys Compd. 686, 723–726 (2016)CrossRef C. Tang, C. Lu, Strong self-biased magnetoelectric charge coupling in a homogenous laminate stack for magnetic sensor. J. Alloys Compd. 686, 723–726 (2016)CrossRef
22.
go back to reference Z. Tang, J. Chen, Y. Bai, S. Zhao, Magnetoelectric coupling effect in lead-free Bi4Ti3O12/CoFe2O4 composite films derived from chemistry solution deposition. Smart Mater. Struct. 25(8), 085020 (2016)CrossRef Z. Tang, J. Chen, Y. Bai, S. Zhao, Magnetoelectric coupling effect in lead-free Bi4Ti3O12/CoFe2O4 composite films derived from chemistry solution deposition. Smart Mater. Struct. 25(8), 085020 (2016)CrossRef
23.
go back to reference J.X. Zhang et al., Phase-field model for epitaxial ferroelectric and magnetic nanocomposite thin films. Appl. Phys. Lett. 90(5), 052909 (2007)CrossRef J.X. Zhang et al., Phase-field model for epitaxial ferroelectric and magnetic nanocomposite thin films. Appl. Phys. Lett. 90(5), 052909 (2007)CrossRef
24.
go back to reference H.-M. Zhou, Q. Chen, S.-X. Qu, M.-H. Li, Model of resonance mechanical loss that considers bias field and pre-stress in magnetostricitve/piezoelectric sandwich laminate. J. Alloys Compd. 631, 165–170 (2015)CrossRef H.-M. Zhou, Q. Chen, S.-X. Qu, M.-H. Li, Model of resonance mechanical loss that considers bias field and pre-stress in magnetostricitve/piezoelectric sandwich laminate. J. Alloys Compd. 631, 165–170 (2015)CrossRef
25.
go back to reference H. Talleb, Z. Ren, Finite element modeling of magnetoelectric laminate composites in considering nonlinear and load effects for energy harvesting. J. Alloys Compd. 615, 65–74 (2014)CrossRef H. Talleb, Z. Ren, Finite element modeling of magnetoelectric laminate composites in considering nonlinear and load effects for energy harvesting. J. Alloys Compd. 615, 65–74 (2014)CrossRef
26.
go back to reference J. Wen, J. Zhang, Y. Gao, A coupling finite element model for analysis the nonlinear dynamic magnetoelectric response of tri-layer laminate composites. Compos. Struct. 166, 163–176 (2017)CrossRef J. Wen, J. Zhang, Y. Gao, A coupling finite element model for analysis the nonlinear dynamic magnetoelectric response of tri-layer laminate composites. Compos. Struct. 166, 163–176 (2017)CrossRef
27.
go back to reference D. Tierno, F. Ciubotaru, R. Duflou, M. Heyns, I.P. Radu, C. Adelmann, Strain coupling optimization in magnetoelectric transducers. Microelectron. Eng. 187–188, 144–147 (2018)CrossRef D. Tierno, F. Ciubotaru, R. Duflou, M. Heyns, I.P. Radu, C. Adelmann, Strain coupling optimization in magnetoelectric transducers. Microelectron. Eng. 187–188, 144–147 (2018)CrossRef
28.
go back to reference X. Mao, Y. Wang, X. Liu, Y. Guo, An adaptive weighted least square support vector regression for hysteresis in piezoelectric actuators. Sens. Actuators A 263, 423–429 (2017)CrossRef X. Mao, Y. Wang, X. Liu, Y. Guo, An adaptive weighted least square support vector regression for hysteresis in piezoelectric actuators. Sens. Actuators A 263, 423–429 (2017)CrossRef
29.
go back to reference M. Salim, D. Salim, D. Chandran, H.S. Aljibori, A.S. Kherbeet, Review of nano piezoelectric devices in biomedicine applications. J. Intell. Mater. Syst. Struct. 29(10), 2105–2121 (2018)CrossRef M. Salim, D. Salim, D. Chandran, H.S. Aljibori, A.S. Kherbeet, Review of nano piezoelectric devices in biomedicine applications. J. Intell. Mater. Syst. Struct. 29(10), 2105–2121 (2018)CrossRef
30.
go back to reference L. Wang, Z. Du, C. Fan, L. Xu, H. Zhang, D. Zhao, Magnetoelectric properties of Fe-Ga/BaTiO3 laminate composites. J. Alloys Compd. 509(2), 508–511 (2011)CrossRef L. Wang, Z. Du, C. Fan, L. Xu, H. Zhang, D. Zhao, Magnetoelectric properties of Fe-Ga/BaTiO3 laminate composites. J. Alloys Compd. 509(2), 508–511 (2011)CrossRef
31.
go back to reference K. Krishnaiah, P. Shahabudeen, Applied Design OF Experiments and Taguchi Methods (PHI Learning, New Delhi, 2012) K. Krishnaiah, P. Shahabudeen, Applied Design OF Experiments and Taguchi Methods (PHI Learning, New Delhi, 2012)
32.
go back to reference M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators (Springer, Berlin Heidelberg, 2013) M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators (Springer, Berlin Heidelberg, 2013)
33.
go back to reference Apc International, Piezoelectric Ceramics: Principles and Applications (APC International, Mackeyville, 2011) Apc International, Piezoelectric Ceramics: Principles and Applications (APC International, Mackeyville, 2011)
34.
go back to reference S. Chikazumi, C.D. Graham, Physics of Ferromagnetism 2e (International Series of Monographs on Physics) (OUP Oxford, Oxford, 2009) S. Chikazumi, C.D. Graham, Physics of Ferromagnetism 2e (International Series of Monographs on Physics) (OUP Oxford, Oxford, 2009)
35.
go back to reference R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley Series in Probability and Statistics) (Wiley, New York, 2011) R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley Series in Probability and Statistics) (Wiley, New York, 2011)
36.
go back to reference K. Najim, E. Ikonen, A.K. Daoud, Stochastic Processes: Estimation (Elsevier Science, Optimisation and Analysis, 2004) K. Najim, E. Ikonen, A.K. Daoud, Stochastic Processes: Estimation (Elsevier Science, Optimisation and Analysis, 2004)
Metadata
Title
Design, analysis, and optimization of a magnetoelectric actuator using regression modeling, numerical simulation and metaheuristics algorithm
Authors
M. Sadeghi
Y. Hojjat
M. Khodaei
Publication date
29-08-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 17/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02029-x

Other articles of this Issue 17/2019

Journal of Materials Science: Materials in Electronics 17/2019 Go to the issue