Skip to main content
Top
Published in: Intelligent Service Robotics 4/2023

26-06-2023 | Original Research Paper

Design and locomotion analysis of an arm-wheel-track multimodal mobile robot

Authors: Hao Wang, Tianmiao Wang, Jiahao Chen, Xuan Pei, Tao Tang, Taogang Hou

Published in: Intelligent Service Robotics | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increasingly complex application environment has raised higher demands on the performance of ground mobile robots in terms of environmental adaptability, autonomous avoidance, and self-rescue. In addition to multi-sensor fusion and control strategies, novel locomotion systems are crucial research directions. Here we propose a novel hybrid locomotion ground mobile robot, called arm-wheel-track robot (AWTR). It combines two locomotion systems, wheeled and tracked locomotion. Two multiple-degree-of-freedom arms are mounted on the front and rear of its chassis. The arms can assist the robot in transforming locomotion modes, surmounting obstacles, fall recovery, etc. Two ultrasonic sensors and a tilt sensor are mounted on it to perceive the environment and self-posture. One of the ultrasonic sensors mounted on the forearm can achieve a more comprehensive perception of the environment ahead with the extra workspace provided by the forearm. We establish the relationship of terrains with sensor data and forearm posture and develop different locomotion strategies for different terrains, so that the robot can classify different terrain and accomplish the corresponding locomotion strategies autonomously. We have built a prototype and conducted experiments on different terrains. The results verified the robot’s movement performance, the effectiveness of the terrain perception method and the locomotion strategies for different terrains.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Pretto A, Aravecchia S, Burgard W, Chebrolu N, Dornhege C, Falck T, Fleckenstein F, Fontenla A, Imperoli M, Khanna R, Liebisch F, Lottes P, Milioto A, Nardi D, Nardi S, Pfeifer J, Popovic M, Potena C, Pradalier C, Rothacker-Feder E, Sa I, Schaefer A, Siegwart R, Stachniss C, Walter A, Winterhalter W, Wu X, Nieto J (2021) Building an aerial-ground robotics system for precision farming an adaptable solution. IEEE Rob Automat Mag 28(3):29–49 Pretto A, Aravecchia S, Burgard W, Chebrolu N, Dornhege C, Falck T, Fleckenstein F, Fontenla A, Imperoli M, Khanna R, Liebisch F, Lottes P, Milioto A, Nardi D, Nardi S, Pfeifer J, Popovic M, Potena C, Pradalier C, Rothacker-Feder E, Sa I, Schaefer A, Siegwart R, Stachniss C, Walter A, Winterhalter W, Wu X, Nieto J (2021) Building an aerial-ground robotics system for precision farming an adaptable solution. IEEE Rob Automat Mag 28(3):29–49
2.
go back to reference Gonzalez-de-Santos P, Fernandez R, Sepulveda D, Navas E, Emmi L, Armada M (2020) Field robots for intelligent farms-inhering features from industry. Agronomy-Basel 10(11):1638CrossRef Gonzalez-de-Santos P, Fernandez R, Sepulveda D, Navas E, Emmi L, Armada M (2020) Field robots for intelligent farms-inhering features from industry. Agronomy-Basel 10(11):1638CrossRef
3.
go back to reference Rocha F, Garcia G, Pereira RFS, Faria HD, Silva TH, Andrade RHR, Barbosa ES, Almeida A, Cruz E, Andrade W, Serrantola WG, Moura L, Azpurua H, Franca A, Pessin G, Freitas GM, Costa RR, Lizarralde F (2021) ROSI: a robotic system for harsh outdoor industrial inspection-system design and applications. J Intell Rob Syst 103(2):30CrossRef Rocha F, Garcia G, Pereira RFS, Faria HD, Silva TH, Andrade RHR, Barbosa ES, Almeida A, Cruz E, Andrade W, Serrantola WG, Moura L, Azpurua H, Franca A, Pessin G, Freitas GM, Costa RR, Lizarralde F (2021) ROSI: a robotic system for harsh outdoor industrial inspection-system design and applications. J Intell Rob Syst 103(2):30CrossRef
4.
go back to reference Krüger N, Fischer K, Manoonpong P, Palinko O, Bodenhagen L, Baumann T, Kjærum J, Rano I, Naik L, Juel WK, Haarslev F, Ignasov J, Marchetti E, Langedijk RM, Kollakidou A, Jeppesen KC, Heidtmann C, Dalgaard L (2021) The SMOOTH-Robot: a modular, interactive service robot. Front Robot AI Krüger N, Fischer K, Manoonpong P, Palinko O, Bodenhagen L, Baumann T, Kjærum J, Rano I, Naik L, Juel WK, Haarslev F, Ignasov J, Marchetti E, Langedijk RM, Kollakidou A, Jeppesen KC, Heidtmann C, Dalgaard L (2021) The SMOOTH-Robot: a modular, interactive service robot. Front Robot AI
5.
go back to reference Xu K, Wang S, Wang J, Wang X, Chen Z, Si J (2021) High-adaption locomotion with stable robot body for planetary exploration robot carrying potential instruments on unstructured terrain. Chin J Aeronaut 34(5):652–665CrossRef Xu K, Wang S, Wang J, Wang X, Chen Z, Si J (2021) High-adaption locomotion with stable robot body for planetary exploration robot carrying potential instruments on unstructured terrain. Chin J Aeronaut 34(5):652–665CrossRef
6.
go back to reference Kenyon SH, Creary D, Thi D, Maynard J (2005) A small, cheap, and portable reconnaissance robot. In: Carapezza EM (ed) Sensors, and command, control, communications, and intelligence (C31) technologies for homeland security and homeland defense Iv, Pts 1 and 2, vol 5778. Spie-Int Soc Optical Engineering, Bellingham, pp 434–443 Kenyon SH, Creary D, Thi D, Maynard J (2005) A small, cheap, and portable reconnaissance robot. In: Carapezza EM (ed) Sensors, and command, control, communications, and intelligence (C31) technologies for homeland security and homeland defense Iv, Pts 1 and 2, vol 5778. Spie-Int Soc Optical Engineering, Bellingham, pp 434–443
7.
go back to reference Mori Y, Takayama K, Adachi T, Omote S, Nakamura T (2005) Feasibility study on an excavation-type demining robot. Auton Robot 18(3):263–274CrossRef Mori Y, Takayama K, Adachi T, Omote S, Nakamura T (2005) Feasibility study on an excavation-type demining robot. Auton Robot 18(3):263–274CrossRef
8.
go back to reference Prágr M, Bayer J, Faigl J (2022) Autonomous robotic exploration with simultaneous environment and traversability models learning. Front Robot AI 9 Prágr M, Bayer J, Faigl J (2022) Autonomous robotic exploration with simultaneous environment and traversability models learning. Front Robot AI 9
9.
go back to reference Bruzzone L, Nodehi SE, Fanghella P (2022) Tracked locomotion systems for ground mobile robots: a review. Machines 10(8):648CrossRef Bruzzone L, Nodehi SE, Fanghella P (2022) Tracked locomotion systems for ground mobile robots: a review. Machines 10(8):648CrossRef
10.
go back to reference Chung W, Iagnemma K (2016) Wheeled robots. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Cham, pp 575–594CrossRef Chung W, Iagnemma K (2016) Wheeled robots. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Cham, pp 575–594CrossRef
11.
go back to reference Spröwitz AT, Tuleu A, Ajallooeian M, Vespignani M, Möckel R, Eckert P, D’Haene M, Degrave J, Nordmann A, Schrauwen B, Steil J, Ijspeert AJ (2018) Oncilla Robot: a versatile open-source quadruped research robot with compliant pantograph legs. Front Robot AI 5 Spröwitz AT, Tuleu A, Ajallooeian M, Vespignani M, Möckel R, Eckert P, D’Haene M, Degrave J, Nordmann A, Schrauwen B, Steil J, Ijspeert AJ (2018) Oncilla Robot: a versatile open-source quadruped research robot with compliant pantograph legs. Front Robot AI 5
12.
go back to reference Bruzzone L, Quaglia G (2012) Locomotion systems for ground mobile robots in unstructured environments. Mech Sci 3(2):49–62CrossRef Bruzzone L, Quaglia G (2012) Locomotion systems for ground mobile robots in unstructured environments. Mech Sci 3(2):49–62CrossRef
13.
go back to reference Sun T, Xiang X, Su W, Wu H, Song Y (2017) A transformable wheel-legged mobile robot: design, analysis and experiment. Robot Auton Syst 98:30–41CrossRef Sun T, Xiang X, Su W, Wu H, Song Y (2017) A transformable wheel-legged mobile robot: design, analysis and experiment. Robot Auton Syst 98:30–41CrossRef
14.
go back to reference Wei Z, Song G, Zhang Y, Sun H, Qiao G (2016) Transleg: a wire-driven leg-wheel robot with a compliant spine. In: 2016 IEEE international conference on information and automation (ICIA), pp. 7–12. IEEE, New York Wei Z, Song G, Zhang Y, Sun H, Qiao G (2016) Transleg: a wire-driven leg-wheel robot with a compliant spine. In: 2016 IEEE international conference on information and automation (ICIA), pp. 7–12. IEEE, New York
15.
go back to reference Lauria M, Piguet Y, Siegwart R (2002) Octopus - an autonomous wheeled climbing robot. In: Bidaud P, BenAmar F (eds) Climbing and walking robots. Professional Engineering Publishing Ltd, Westminister, pp 315–322 Lauria M, Piguet Y, Siegwart R (2002) Octopus - an autonomous wheeled climbing robot. In: Bidaud P, BenAmar F (eds) Climbing and walking robots. Professional Engineering Publishing Ltd, Westminister, pp 315–322
16.
go back to reference Chen H-Y, Wang T-H, Ho K-C, Ko C-Y, Lin P-C, Lin P-C (2021) Development of a novel leg-wheel module with fast transformation and leaping capability. Mech Mach Theory 163:104348CrossRef Chen H-Y, Wang T-H, Ho K-C, Ko C-Y, Lin P-C, Lin P-C (2021) Development of a novel leg-wheel module with fast transformation and leaping capability. Mech Mach Theory 163:104348CrossRef
17.
go back to reference Tadakuma K, Tadakuma R, Maruyama A, Rohmer E, Nagatani K, Yoshida K, Ming A, Shimojo M, Higashimori M, Kaneko M (2010) Mechanical design of the wheel-leg hybrid mobile robot to realize a large wheel diameter. In: IEEE/Rsj 2010 international conference on intelligent robots and systems (IROS 2010), pp. 3358–3365. IEEE, New York Tadakuma K, Tadakuma R, Maruyama A, Rohmer E, Nagatani K, Yoshida K, Ming A, Shimojo M, Higashimori M, Kaneko M (2010) Mechanical design of the wheel-leg hybrid mobile robot to realize a large wheel diameter. In: IEEE/Rsj 2010 international conference on intelligent robots and systems (IROS 2010), pp. 3358–3365. IEEE, New York
18.
go back to reference Hodoshima R, Fukumura Y, Amano H, Hirose S (2010) Development of track-changeable quadruped walking robot TITAN X-design of leg driving mechanism and basic experiment. In: IEEE/Rsj 2010 international conference on intelligent robots and systems (IROS 2010). IEEE, New York Hodoshima R, Fukumura Y, Amano H, Hirose S (2010) Development of track-changeable quadruped walking robot TITAN X-design of leg driving mechanism and basic experiment. In: IEEE/Rsj 2010 international conference on intelligent robots and systems (IROS 2010). IEEE, New York
19.
go back to reference Nagatani K, Kinoshita H, Yoshida K, Tadakuma K, Koyanagi E (2011) Development of leg-track hybrid locomotion to traverse loose slopes and irregular terrain. J Field Robot 28(6):950–960CrossRef Nagatani K, Kinoshita H, Yoshida K, Tadakuma K, Koyanagi E (2011) Development of leg-track hybrid locomotion to traverse loose slopes and irregular terrain. J Field Robot 28(6):950–960CrossRef
20.
go back to reference Mutka A, Kovacic Z (2011) A leg-wheel robot-based approach to the solution of flipper-track robot kinematics. In: 2011 IEEE international conference on control applications (CCA), pp. 1443–1450. IEEE, New York Mutka A, Kovacic Z (2011) A leg-wheel robot-based approach to the solution of flipper-track robot kinematics. In: 2011 IEEE international conference on control applications (CCA), pp. 1443–1450. IEEE, New York
21.
go back to reference Zhu Y, Fei Y, Xu H (2018) Stability analysis of a wheel-track-leg hybrid mobile robot. J Intell Robot Syst 91(3–4):515–528CrossRef Zhu Y, Fei Y, Xu H (2018) Stability analysis of a wheel-track-leg hybrid mobile robot. J Intell Robot Syst 91(3–4):515–528CrossRef
22.
go back to reference Michaud F, Letourneau D, Arsenault M, Bergeron Y, Cadrin R, Gagnon F, Legault MA, Millette M, Pare JF, Tremblay MC, Lepage P, Morin Y, Bisson J, Caron S (2005) Multi-modal locomotion robotic platform using leg-track-wheel articulations. Auton Robot 18(2):137–156CrossRef Michaud F, Letourneau D, Arsenault M, Bergeron Y, Cadrin R, Gagnon F, Legault MA, Millette M, Pare JF, Tremblay MC, Lepage P, Morin Y, Bisson J, Caron S (2005) Multi-modal locomotion robotic platform using leg-track-wheel articulations. Auton Robot 18(2):137–156CrossRef
23.
go back to reference Hirose S, Fukushima EF, Damoto R, Nakamoto H (2001) Design of terrain adaptive versatile crawler vehicle HELIOS-VI. In: IROS 2001: proceedings of the 2001 IEEE/Rjs international conference on intelligent robots and systems, Vol. 1-4: expanding the societal role of robotics in the next Millennium, pp. 1540–1545. IEEE, New York Hirose S, Fukushima EF, Damoto R, Nakamoto H (2001) Design of terrain adaptive versatile crawler vehicle HELIOS-VI. In: IROS 2001: proceedings of the 2001 IEEE/Rjs international conference on intelligent robots and systems, Vol. 1-4: expanding the societal role of robotics in the next Millennium, pp. 1540–1545. IEEE, New York
24.
go back to reference Kim J, Kim Y-G, Kwak J-H, Hong D-H, An J (2010) Wheel & Track hybrid robot platform for optimal navigation in an urban environment. In: proceedings of SICE annual conference 2010, pp. 881–884 Kim J, Kim Y-G, Kwak J-H, Hong D-H, An J (2010) Wheel & Track hybrid robot platform for optimal navigation in an urban environment. In: proceedings of SICE annual conference 2010, pp. 881–884
25.
go back to reference Cui D, Gao X, Guo W (2016) Mechanism design and motion ability analysis for wheel/track mobile robot. Adv Mech Eng 8(11):1687814016679763CrossRef Cui D, Gao X, Guo W (2016) Mechanism design and motion ability analysis for wheel/track mobile robot. Adv Mech Eng 8(11):1687814016679763CrossRef
26.
go back to reference Gao X, Cui D, Guo W, Mu Y, Li B (2017) Dynamics and stability analysis on stairs climbing of wheel-track mobile robot. Int J Adv Robot Syst 14(4) Gao X, Cui D, Guo W, Mu Y, Li B (2017) Dynamics and stability analysis on stairs climbing of wheel-track mobile robot. Int J Adv Robot Syst 14(4)
27.
go back to reference Ben-Tzvi P, Saab W (2019) A hybrid tracked-wheeled multi-directional mobile robot. J Mech Robot Trans ASME 11(4):041008CrossRef Ben-Tzvi P, Saab W (2019) A hybrid tracked-wheeled multi-directional mobile robot. J Mech Robot Trans ASME 11(4):041008CrossRef
Metadata
Title
Design and locomotion analysis of an arm-wheel-track multimodal mobile robot
Authors
Hao Wang
Tianmiao Wang
Jiahao Chen
Xuan Pei
Tao Tang
Taogang Hou
Publication date
26-06-2023
Publisher
Springer Berlin Heidelberg
Published in
Intelligent Service Robotics / Issue 4/2023
Print ISSN: 1861-2776
Electronic ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-023-00472-8

Other articles of this Issue 4/2023

Intelligent Service Robotics 4/2023 Go to the issue