Skip to main content
Top
Published in: Microsystem Technologies 8/2019

17-12-2018 | Technical Paper

Design and numerical analysis of interdigitated radiating-strips electrode for uniform 3D dielectrophoretic patterning of liver cells

Authors: Wan Nurlina Wan Yahya, Nahrizul Adib Kadri, Fatimah Ibrahim

Published in: Microsystem Technologies | Issue 8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents the design and numerical analysis of a new three-dimensional (3D) electrode having a non-uniform electric field gradient for dielectrophoretic patterning of liver cells. The strength of the dielectrophoresis (DEP) force is influenced by the gradient of electric field generated by the electrode. The new design of the 3D electrode with two different electrode configurations were first modelled and simulated using COMSOL Multiphysics. Results show that the electrical field distribution of vertical configuration concentrated only on the end strips and decays progressively towards the centre while the horizontal configuration shows a more uniform electric field distribution with minimal decrease of the electric field towards the centre. Besides, the horizontal configuration offered 2.7 times higher of the electrical field strength to establish the 3D DEP force hence the 3D cellular pattern. Thus, the electrode with the horizontal configuration has been proposed and optimized to be fabricated for the cell patterning application later on. The optimum electrode dimension identified in this work was 20 µm: 50 µm (gap: height) with a 20 µm electrode width that generates a maximum value of 1.06 × 106 V/m with a voltage set at 5 V. Increasing voltage leads to a stronger electric field and more DEP force would be imposed on the cells. This findings support that the unique design of the 3D electrode can further be used for dielectrophoretic-based patterning mechanism specifically for the complex liver tissue engineering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Albrecht DR, Sah RL, Bhatia SN (2004) Geometric and material determinants of patterning efficiency by dielectrophoresis. Biophys J 87(4):2131–2147CrossRef Albrecht DR, Sah RL, Bhatia SN (2004) Geometric and material determinants of patterning efficiency by dielectrophoresis. Biophys J 87(4):2131–2147CrossRef
go back to reference Archer S, Li T-T, Evans AT, Britland ST, Morgan H (1999) Cell reactions to dielectrophoretic manipulation. Biochem Biophys Res Commun 257(3):687–698CrossRef Archer S, Li T-T, Evans AT, Britland ST, Morgan H (1999) Cell reactions to dielectrophoretic manipulation. Biochem Biophys Res Commun 257(3):687–698CrossRef
go back to reference Cao J, Cheng P, Hong F (2008) A numerical analysis of forces imposed on particles in conventional dielectrophoresis in microchannels with interdigitated electrodes. J Electrostat 66(11–12):620–626CrossRef Cao J, Cheng P, Hong F (2008) A numerical analysis of forces imposed on particles in conventional dielectrophoresis in microchannels with interdigitated electrodes. J Electrostat 66(11–12):620–626CrossRef
go back to reference Fausto N, Campbell JS (2003) The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 120(1):117–130CrossRef Fausto N, Campbell JS (2003) The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 120(1):117–130CrossRef
go back to reference Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32(18):2466–2487CrossRef Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32(18):2466–2487CrossRef
go back to reference Ho CT, Lin RZ, Chang WY, Chang HY, Liu CH (2006) Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip 6(6):724–734CrossRef Ho CT, Lin RZ, Chang WY, Chang HY, Liu CH (2006) Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip 6(6):724–734CrossRef
go back to reference Ho CT, Lin RZ, Chen RJ, Chin CK, Gong SE, Chang HY, Peng HL, Hsu L, Yew TR, Chang SF, Liu CH (2013) Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip 13(18):3578–3587CrossRef Ho CT, Lin RZ, Chen RJ, Chin CK, Gong SE, Chang HY, Peng HL, Hsu L, Yew TR, Chang SF, Liu CH (2013) Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip 13(18):3578–3587CrossRef
go back to reference Ibrahim SN, Alkaisi MM (2015) Microelectrode design for particle trapping on bioanalysis platform. Advanced materials research. Trans Tech Publ, Zurich Ibrahim SN, Alkaisi MM (2015) Microelectrode design for particle trapping on bioanalysis platform. Advanced materials research. Trans Tech Publ, Zurich
go back to reference Ma W, Shi T, Tang Z, Liu S, Malik R, Zhang L (2011) High-throughput dielectrophoretic manipulation of bioparticles within fluids through biocompatible three-dimensional microelectrode array. Electrophoresis 32(5):494–505CrossRef Ma W, Shi T, Tang Z, Liu S, Malik R, Zhang L (2011) High-throughput dielectrophoretic manipulation of bioparticles within fluids through biocompatible three-dimensional microelectrode array. Electrophoresis 32(5):494–505CrossRef
go back to reference Nedelcu OT (2011) A thermal study on joule-heating induced effects in dielectrophoretic microfilters. Rom J Inf Sci Technol 14(4):309–323 Nedelcu OT (2011) A thermal study on joule-heating induced effects in dielectrophoretic microfilters. Rom J Inf Sci Technol 14(4):309–323
go back to reference Park BY, Madou MJ (2005) 3-D electrode designs for flow-through dielectrophoretic systems. Electrophoresis 26(19):3745–3757CrossRef Park BY, Madou MJ (2005) 3-D electrode designs for flow-through dielectrophoretic systems. Electrophoresis 26(19):3745–3757CrossRef
go back to reference Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871CrossRef Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871CrossRef
go back to reference Rouabah HA, Park BY, Zaouk RB, Morgan H, Madou MJ, Green NG (2011) Design and fabrication of an ac-electro-osmosis micropump with 3D high-aspect-ratio electrodes using only SU-8. J Micromech Microeng 21(3):035018CrossRef Rouabah HA, Park BY, Zaouk RB, Morgan H, Madou MJ, Green NG (2011) Design and fabrication of an ac-electro-osmosis micropump with 3D high-aspect-ratio electrodes using only SU-8. J Micromech Microeng 21(3):035018CrossRef
go back to reference Stevens KR, Ungrin MD, Schwartz RE, Ng S, Carvalho B, Christine KS, Chaturvedi RR, Li CY, Zandstra PW, Chen CS, Bhatia SN (2013) InVERT molding for scalable control of tissue microarchitecture. Nat Commun 4:1847CrossRef Stevens KR, Ungrin MD, Schwartz RE, Ng S, Carvalho B, Christine KS, Chaturvedi RR, Li CY, Zandstra PW, Chen CS, Bhatia SN (2013) InVERT molding for scalable control of tissue microarchitecture. Nat Commun 4:1847CrossRef
go back to reference Stulík K, Amatore C, Holub K, Marecek V, Kutner W (2000) Microelectrodes. Definitions, characterization, and applications (technical report). Pure Appl Chem 72(8):1483–1492CrossRef Stulík K, Amatore C, Holub K, Marecek V, Kutner W (2000) Microelectrodes. Definitions, characterization, and applications (technical report). Pure Appl Chem 72(8):1483–1492CrossRef
go back to reference Tay FE, Yu L, Pang AJ, Iliescu C (2007) Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation. Electrochim Acta 52(8):2862–2868CrossRef Tay FE, Yu L, Pang AJ, Iliescu C (2007) Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation. Electrochim Acta 52(8):2862–2868CrossRef
go back to reference Voldman J (2006) Dielectrophoretic traps for cell manipulation. BioMEMS and biomedical nanotechnology. Springer, Berlin, pp 159–186CrossRef Voldman J (2006) Dielectrophoretic traps for cell manipulation. BioMEMS and biomedical nanotechnology. Springer, Berlin, pp 159–186CrossRef
go back to reference Voldman J, Toner M, Gray M, Schmidt M (2003) Design and analysis of extruded quadrupolar dielectrophoretic traps. J Electrostat 57(1):69–90CrossRef Voldman J, Toner M, Gray M, Schmidt M (2003) Design and analysis of extruded quadrupolar dielectrophoretic traps. J Electrostat 57(1):69–90CrossRef
go back to reference Wang X, Yang J, Gascoyne PR (1999) Role of peroxide in AC electrical field exposure effects on Friend murine erythroleukemia cells during dielectrophoretic manipulations. Biochimica et Biophysica Acta (BBA) Gen Subj 1426(1):53–68CrossRef Wang X, Yang J, Gascoyne PR (1999) Role of peroxide in AC electrical field exposure effects on Friend murine erythroleukemia cells during dielectrophoretic manipulations. Biochimica et Biophysica Acta (BBA) Gen Subj 1426(1):53–68CrossRef
go back to reference Yafouz B, Kadri N, Ibrahim F (2012) A numerical analysis of electric field strength over planar microarray dot electrode for dielectrophoretic lab-on-chip device. In: 2012 IEEE EMBS conference on biomedical engineering and sciences (IECBES). IEEE Yafouz B, Kadri N, Ibrahim F (2012) A numerical analysis of electric field strength over planar microarray dot electrode for dielectrophoretic lab-on-chip device. In: 2012 IEEE EMBS conference on biomedical engineering and sciences (IECBES). IEEE
go back to reference Yoon No D, Lee KH, Lee J, Lee SH (2015) 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15(19):3822–3837CrossRef Yoon No D, Lee KH, Lee J, Lee SH (2015) 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15(19):3822–3837CrossRef
go back to reference Zhang J, Zhao X, Liang L, Li J, Demirci U, Wang S (2018) A decade of progress in liver regenerative medicine. Biomaterials 157:161–176CrossRef Zhang J, Zhao X, Liang L, Li J, Demirci U, Wang S (2018) A decade of progress in liver regenerative medicine. Biomaterials 157:161–176CrossRef
Metadata
Title
Design and numerical analysis of interdigitated radiating-strips electrode for uniform 3D dielectrophoretic patterning of liver cells
Authors
Wan Nurlina Wan Yahya
Nahrizul Adib Kadri
Fatimah Ibrahim
Publication date
17-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 8/2019
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4258-7

Other articles of this Issue 8/2019

Microsystem Technologies 8/2019 Go to the issue