Skip to main content
Top
Published in: Microsystem Technologies 12/2018

09-04-2018 | Technical Paper

Design and numerical study on a novel micromixer based on Cantor fractal structure

Authors: Zeyang Wu, Xueye Chen

Published in: Microsystem Technologies | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The application of micromixer in many fields is becoming more and more important, and lots of researchers have proposed different designs. In this paper, in order to improve the efficiency of the micromixer, we propose a novel fractal micromixer based on Cantor fractal principle. The mixing performance of the device is investigated by numerical simulation. We discuss the influence of primary fractal obstacle and secondary fractal obstacle (SFO) on the mixing efficiency. And we compare two micromixers: SFO micromixer and TFO (third fractal obstacle) micromixer. When Re > 10, their mixing efficiency can be more than 90%. Then, the effects of SFO and TFO on the mixing efficiency are deeply studied. We compare the velocity streamline and velocity cross section of the fluid, and analyze the effect of SFO on the concentration trend. The results reveal that SFO can effectively improve the mixing efficiency. SFO can break the laminar flow, and it makes the fluid more likely to produce mixing convection and can increase the contact area of the fluid by folding and deflecting.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ansari MA, Kim KY, Anwar K et al (2010) A novel passive micromixer based on unbalanced splits and collisions of fluid streams. J Micromech Microeng 20(5):055007CrossRef Ansari MA, Kim KY, Anwar K et al (2010) A novel passive micromixer based on unbalanced splits and collisions of fluid streams. J Micromech Microeng 20(5):055007CrossRef
go back to reference Aoki N, Umei R, Yoshida A et al (2011) Design method for micromixers considering influence of channel confluence and bend on diffusion length. Chem Eng J 167(2–3):643–650CrossRef Aoki N, Umei R, Yoshida A et al (2011) Design method for micromixers considering influence of channel confluence and bend on diffusion length. Chem Eng J 167(2–3):643–650CrossRef
go back to reference Bhagat AAS, Peterson ETK, Papautsky I (2007) A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J Micromech Microeng 17(5):1017CrossRef Bhagat AAS, Peterson ETK, Papautsky I (2007) A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J Micromech Microeng 17(5):1017CrossRef
go back to reference Chau JLH, Leung AYL, Yeung KL (2003) Zeolite micromembranes. Lab on a Chip 3(2):53–55CrossRef Chau JLH, Leung AYL, Yeung KL (2003) Zeolite micromembranes. Lab on a Chip 3(2):53–55CrossRef
go back to reference Chen X, Li T (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem Eng J 313:1406–1414CrossRef Chen X, Li T (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem Eng J 313:1406–1414CrossRef
go back to reference Chen X, Shen J (2017a) Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600CrossRef Chen X, Shen J (2017a) Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600CrossRef
go back to reference Chen X, Shen J (2017b) Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600CrossRef Chen X, Shen J (2017b) Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600CrossRef
go back to reference Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal Chim Acta 964:142–149CrossRef Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal Chim Acta 964:142–149CrossRef
go back to reference Chen X, Liu C, Xu Z, Pan Y, Liu J, Du L (2013) An effective PDMS microfluidic chip for chemiluminescence detection of cobalt (II) in water. Microsyst Technol 19(1):99–103CrossRef Chen X, Liu C, Xu Z, Pan Y, Liu J, Du L (2013) An effective PDMS microfluidic chip for chemiluminescence detection of cobalt (II) in water. Microsyst Technol 19(1):99–103CrossRef
go back to reference Chen X, Li T, Zeng H, Hu Z, Fu B (2016a) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140CrossRef Chen X, Li T, Zeng H, Hu Z, Fu B (2016a) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140CrossRef
go back to reference Chen X, Shen J, Zhou M (2016b) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001CrossRef Chen X, Shen J, Zhou M (2016b) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001CrossRef
go back to reference Chen X, Li T, Shen J, Hu Z (2017) From structures, packaging to application: a system-level review for micro direct methanol fuel cell. Renew Sustain Energy Rev 80:669–678CrossRef Chen X, Li T, Shen J, Hu Z (2017) From structures, packaging to application: a system-level review for micro direct methanol fuel cell. Renew Sustain Energy Rev 80:669–678CrossRef
go back to reference Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60(8):2479–2501CrossRef Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60(8):2479–2501CrossRef
go back to reference Hong CC, Choi JW, Ahn CH (2001) A novel in-plane passive micromixer using Coanda effect. Micro Total Analysis Systems. Springer, Amsterdam, pp 31–33 Hong CC, Choi JW, Ahn CH (2001) A novel in-plane passive micromixer using Coanda effect. Micro Total Analysis Systems. Springer, Amsterdam, pp 31–33
go back to reference Jeon W, Shin CB (2009) Design and simulation of passive mixing in microfluidic systems with geometric variations. Chem Eng J 152(2):575–582CrossRef Jeon W, Shin CB (2009) Design and simulation of passive mixing in microfluidic systems with geometric variations. Chem Eng J 152(2):575–582CrossRef
go back to reference Lin YC, Chung YC, Wu CY (2007) Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed Microdevices 9(2):215–221CrossRef Lin YC, Chung YC, Wu CY (2007) Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed Microdevices 9(2):215–221CrossRef
go back to reference Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469CrossRef Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469CrossRef
go back to reference Nimafar M, Viktorov V, Martinelli M (2012a) Experimental comparative mixing performance and pressure drop simulation of three passive micromixers. Majlesi J Mechatron Syst 1(4):20–29 Nimafar M, Viktorov V, Martinelli M (2012a) Experimental comparative mixing performance and pressure drop simulation of three passive micromixers. Majlesi J Mechatron Syst 1(4):20–29
go back to reference Nimafar M, Viktorov V, Martinelli M (2012b) Experimental investigation of split and recombination micromixer in confront with basic T-and O-type micromixers. Int J Mech Appl 2(5):61–69 Nimafar M, Viktorov V, Martinelli M (2012b) Experimental investigation of split and recombination micromixer in confront with basic T-and O-type micromixers. Int J Mech Appl 2(5):61–69
go back to reference Nimafar M, Viktorov V, Martinelli M (2012c) Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels. Chem Eng Sci 76:37–44CrossRef Nimafar M, Viktorov V, Martinelli M (2012c) Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels. Chem Eng Sci 76:37–44CrossRef
go back to reference Niu X, Liu L, Wen W et al (2006) Active microfluidic mixer chip. Appl Phys Lett 88(15):153508CrossRef Niu X, Liu L, Wen W et al (2006) Active microfluidic mixer chip. Appl Phys Lett 88(15):153508CrossRef
go back to reference Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832CrossRef Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832CrossRef
go back to reference Sritharan K, Strobl CJ, Schneider MF et al (2006) Acoustic mixing at low Reynolds numbers. Appl Phys Lett 88(5):054102CrossRef Sritharan K, Strobl CJ, Schneider MF et al (2006) Acoustic mixing at low Reynolds numbers. Appl Phys Lett 88(5):054102CrossRef
go back to reference Tofteberg T, Skolimowski M, Andreassen E et al (2010) A novel passive micromixer: lamination in a planar channel system. Microfluid Nanofluid 8(2):209–215CrossRef Tofteberg T, Skolimowski M, Andreassen E et al (2010) A novel passive micromixer: lamination in a planar channel system. Microfluid Nanofluid 8(2):209–215CrossRef
go back to reference Viktorov V, Nimafar M (2013) A novel generation of 3D SAR-based passive micromixer: efficient mixing and low pressure drop at a low Reynolds number. J Micromech Microeng 23(5):055023CrossRef Viktorov V, Nimafar M (2013) A novel generation of 3D SAR-based passive micromixer: efficient mixing and low pressure drop at a low Reynolds number. J Micromech Microeng 23(5):055023CrossRef
go back to reference Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRef
go back to reference Wu CY (2007) Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed Microdevices 9(2):215–221CrossRef Wu CY (2007) Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed Microdevices 9(2):215–221CrossRef
Metadata
Title
Design and numerical study on a novel micromixer based on Cantor fractal structure
Authors
Zeyang Wu
Xueye Chen
Publication date
09-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 12/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3900-8

Other articles of this Issue 12/2018

Microsystem Technologies 12/2018 Go to the issue