Skip to main content
Erschienen in: Microsystem Technologies 12/2018

09.04.2018 | Technical Paper

Design and numerical study on a novel micromixer based on Cantor fractal structure

verfasst von: Zeyang Wu, Xueye Chen

Erschienen in: Microsystem Technologies | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The application of micromixer in many fields is becoming more and more important, and lots of researchers have proposed different designs. In this paper, in order to improve the efficiency of the micromixer, we propose a novel fractal micromixer based on Cantor fractal principle. The mixing performance of the device is investigated by numerical simulation. We discuss the influence of primary fractal obstacle and secondary fractal obstacle (SFO) on the mixing efficiency. And we compare two micromixers: SFO micromixer and TFO (third fractal obstacle) micromixer. When Re > 10, their mixing efficiency can be more than 90%. Then, the effects of SFO and TFO on the mixing efficiency are deeply studied. We compare the velocity streamline and velocity cross section of the fluid, and analyze the effect of SFO on the concentration trend. The results reveal that SFO can effectively improve the mixing efficiency. SFO can break the laminar flow, and it makes the fluid more likely to produce mixing convection and can increase the contact area of the fluid by folding and deflecting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ansari MA, Kim KY, Anwar K et al (2010) A novel passive micromixer based on unbalanced splits and collisions of fluid streams. J Micromech Microeng 20(5):055007CrossRef Ansari MA, Kim KY, Anwar K et al (2010) A novel passive micromixer based on unbalanced splits and collisions of fluid streams. J Micromech Microeng 20(5):055007CrossRef
Zurück zum Zitat Aoki N, Umei R, Yoshida A et al (2011) Design method for micromixers considering influence of channel confluence and bend on diffusion length. Chem Eng J 167(2–3):643–650CrossRef Aoki N, Umei R, Yoshida A et al (2011) Design method for micromixers considering influence of channel confluence and bend on diffusion length. Chem Eng J 167(2–3):643–650CrossRef
Zurück zum Zitat Bhagat AAS, Peterson ETK, Papautsky I (2007) A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J Micromech Microeng 17(5):1017CrossRef Bhagat AAS, Peterson ETK, Papautsky I (2007) A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J Micromech Microeng 17(5):1017CrossRef
Zurück zum Zitat Chau JLH, Leung AYL, Yeung KL (2003) Zeolite micromembranes. Lab on a Chip 3(2):53–55CrossRef Chau JLH, Leung AYL, Yeung KL (2003) Zeolite micromembranes. Lab on a Chip 3(2):53–55CrossRef
Zurück zum Zitat Chen X, Li T (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem Eng J 313:1406–1414CrossRef Chen X, Li T (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem Eng J 313:1406–1414CrossRef
Zurück zum Zitat Chen X, Shen J (2017a) Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600CrossRef Chen X, Shen J (2017a) Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600CrossRef
Zurück zum Zitat Chen X, Shen J (2017b) Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600CrossRef Chen X, Shen J (2017b) Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600CrossRef
Zurück zum Zitat Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal Chim Acta 964:142–149CrossRef Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal Chim Acta 964:142–149CrossRef
Zurück zum Zitat Chen X, Liu C, Xu Z, Pan Y, Liu J, Du L (2013) An effective PDMS microfluidic chip for chemiluminescence detection of cobalt (II) in water. Microsyst Technol 19(1):99–103CrossRef Chen X, Liu C, Xu Z, Pan Y, Liu J, Du L (2013) An effective PDMS microfluidic chip for chemiluminescence detection of cobalt (II) in water. Microsyst Technol 19(1):99–103CrossRef
Zurück zum Zitat Chen X, Li T, Zeng H, Hu Z, Fu B (2016a) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140CrossRef Chen X, Li T, Zeng H, Hu Z, Fu B (2016a) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140CrossRef
Zurück zum Zitat Chen X, Shen J, Zhou M (2016b) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001CrossRef Chen X, Shen J, Zhou M (2016b) Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. J Micromech Microeng 26(10):107001CrossRef
Zurück zum Zitat Chen X, Li T, Shen J, Hu Z (2017) From structures, packaging to application: a system-level review for micro direct methanol fuel cell. Renew Sustain Energy Rev 80:669–678CrossRef Chen X, Li T, Shen J, Hu Z (2017) From structures, packaging to application: a system-level review for micro direct methanol fuel cell. Renew Sustain Energy Rev 80:669–678CrossRef
Zurück zum Zitat Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60(8):2479–2501CrossRef Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60(8):2479–2501CrossRef
Zurück zum Zitat Hong CC, Choi JW, Ahn CH (2001) A novel in-plane passive micromixer using Coanda effect. Micro Total Analysis Systems. Springer, Amsterdam, pp 31–33 Hong CC, Choi JW, Ahn CH (2001) A novel in-plane passive micromixer using Coanda effect. Micro Total Analysis Systems. Springer, Amsterdam, pp 31–33
Zurück zum Zitat Jeon W, Shin CB (2009) Design and simulation of passive mixing in microfluidic systems with geometric variations. Chem Eng J 152(2):575–582CrossRef Jeon W, Shin CB (2009) Design and simulation of passive mixing in microfluidic systems with geometric variations. Chem Eng J 152(2):575–582CrossRef
Zurück zum Zitat Lin YC, Chung YC, Wu CY (2007) Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed Microdevices 9(2):215–221CrossRef Lin YC, Chung YC, Wu CY (2007) Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed Microdevices 9(2):215–221CrossRef
Zurück zum Zitat Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469CrossRef Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 11(5):462–469CrossRef
Zurück zum Zitat Nimafar M, Viktorov V, Martinelli M (2012a) Experimental comparative mixing performance and pressure drop simulation of three passive micromixers. Majlesi J Mechatron Syst 1(4):20–29 Nimafar M, Viktorov V, Martinelli M (2012a) Experimental comparative mixing performance and pressure drop simulation of three passive micromixers. Majlesi J Mechatron Syst 1(4):20–29
Zurück zum Zitat Nimafar M, Viktorov V, Martinelli M (2012b) Experimental investigation of split and recombination micromixer in confront with basic T-and O-type micromixers. Int J Mech Appl 2(5):61–69 Nimafar M, Viktorov V, Martinelli M (2012b) Experimental investigation of split and recombination micromixer in confront with basic T-and O-type micromixers. Int J Mech Appl 2(5):61–69
Zurück zum Zitat Nimafar M, Viktorov V, Martinelli M (2012c) Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels. Chem Eng Sci 76:37–44CrossRef Nimafar M, Viktorov V, Martinelli M (2012c) Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels. Chem Eng Sci 76:37–44CrossRef
Zurück zum Zitat Niu X, Liu L, Wen W et al (2006) Active microfluidic mixer chip. Appl Phys Lett 88(15):153508CrossRef Niu X, Liu L, Wen W et al (2006) Active microfluidic mixer chip. Appl Phys Lett 88(15):153508CrossRef
Zurück zum Zitat Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832CrossRef Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832CrossRef
Zurück zum Zitat Sritharan K, Strobl CJ, Schneider MF et al (2006) Acoustic mixing at low Reynolds numbers. Appl Phys Lett 88(5):054102CrossRef Sritharan K, Strobl CJ, Schneider MF et al (2006) Acoustic mixing at low Reynolds numbers. Appl Phys Lett 88(5):054102CrossRef
Zurück zum Zitat Tofteberg T, Skolimowski M, Andreassen E et al (2010) A novel passive micromixer: lamination in a planar channel system. Microfluid Nanofluid 8(2):209–215CrossRef Tofteberg T, Skolimowski M, Andreassen E et al (2010) A novel passive micromixer: lamination in a planar channel system. Microfluid Nanofluid 8(2):209–215CrossRef
Zurück zum Zitat Viktorov V, Nimafar M (2013) A novel generation of 3D SAR-based passive micromixer: efficient mixing and low pressure drop at a low Reynolds number. J Micromech Microeng 23(5):055023CrossRef Viktorov V, Nimafar M (2013) A novel generation of 3D SAR-based passive micromixer: efficient mixing and low pressure drop at a low Reynolds number. J Micromech Microeng 23(5):055023CrossRef
Zurück zum Zitat Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRef
Zurück zum Zitat Wu CY (2007) Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed Microdevices 9(2):215–221CrossRef Wu CY (2007) Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed Microdevices 9(2):215–221CrossRef
Metadaten
Titel
Design and numerical study on a novel micromixer based on Cantor fractal structure
verfasst von
Zeyang Wu
Xueye Chen
Publikationsdatum
09.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 12/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3900-8

Weitere Artikel der Ausgabe 12/2018

Microsystem Technologies 12/2018 Zur Ausgabe

Neuer Inhalt