Skip to main content
Top
Published in: Microsystem Technologies 8/2017

22-10-2016 | Technical Paper

Design and optimization of a novel magnetically-actuated micromanipulator

Authors: Mohammad Al Mashagbeh, Thamir Al-dulaimi, Mir Behrad Khamesee

Published in: Microsystem Technologies | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The ability of external magnetic fields to precisely control micromanipulators has received a great deal of attention from researchers in recent years due to its off-board power source. Researchers have proposed a number of designs for magnetically-actuated micromanipulators for various applications. However, in most of the proposed magnetically-actuated micromanipulators, the manipulator workspace area is small relative to the manipulator volume, and the ratio of the generated magnetic force to manipulator weight is low. In this paper, we introduce design and optimization procedures for a portable magnetically-actuated micromanipulator. The proposed micromanipulator has many potential applications, such as medical applications, pick and place operations, micro-assembly, and micro-machining processes. The proposed micromanipulator has two main subsystems: a magnetic actuator and an electromagnetic end-effector that is connected to the magnetic actuator by a needle. In this paper, we focus on the magnetic actuation concept of the proposed micromanipulator system. We present the optimal configuration that will maximize the micromanipulator actuation force, and a closed form solution for micromanipulator actuation force. We also present the force measurement experimental setup and results of finite element methods (FEM) analysis to validate the developed model. The results show an agreement between the model, the experiment, and the FEM results. The error difference between the FEM, experimental, and model data is approximately 0.05 N.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Afshar S, Khamesee MB, Khajepour A (2013) Optimal configuration for electromagnets and coils in magnetic actuators. Magn IEEE Trans 49(4):1372–1381CrossRef Afshar S, Khamesee MB, Khajepour A (2013) Optimal configuration for electromagnets and coils in magnetic actuators. Magn IEEE Trans 49(4):1372–1381CrossRef
go back to reference Andriollo M, Martinelli G, Tortella A (2015) Optimization of an electrodynamic linear actuator for biometric applications. IEEE Trans Magn 51(8):1–6CrossRef Andriollo M, Martinelli G, Tortella A (2015) Optimization of an electrodynamic linear actuator for biometric applications. IEEE Trans Magn 51(8):1–6CrossRef
go back to reference Badr BM, Ali WG (2011) Applications of piezoelectric materials. Adv Mater Res 189:3612–3620CrossRef Badr BM, Ali WG (2011) Applications of piezoelectric materials. Adv Mater Res 189:3612–3620CrossRef
go back to reference de Vries AHB, Krenn BE, van Driel R, Kanger JS (2005) Micro magnetic tweezers for nanomanipulation inside live cells. Biophys J 88(3):2137–2144CrossRef de Vries AHB, Krenn BE, van Driel R, Kanger JS (2005) Micro magnetic tweezers for nanomanipulation inside live cells. Biophys J 88(3):2137–2144CrossRef
go back to reference Dkhil M, Bolopion A, Regnier S, Gauthier M (2014) Modeling and experiments of high speed magnetic micromanipulation at the air/liquid interface. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference, pp 4649–4655 Dkhil M, Bolopion A, Regnier S, Gauthier M (2014) Modeling and experiments of high speed magnetic micromanipulation at the air/liquid interface. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference, pp 4649–4655
go back to reference Furlani EP (1993a) A formula for the levitation force between magnetic disks. Magn IEEE Trans 29(6):4165–4169CrossRef Furlani EP (1993a) A formula for the levitation force between magnetic disks. Magn IEEE Trans 29(6):4165–4169CrossRef
go back to reference Furlani EP (1993b) Formulas for the force and torque of axial couplings. IEEE Trans Magn 29(5):2295–2301CrossRef Furlani EP (1993b) Formulas for the force and torque of axial couplings. IEEE Trans Magn 29(5):2295–2301CrossRef
go back to reference Guo S, Pan Q, Khamesee MB (2008) Development of a novel type of microrobot for biomedical application. Microsyst Technol 14(3):307–314CrossRef Guo S, Pan Q, Khamesee MB (2008) Development of a novel type of microrobot for biomedical application. Microsyst Technol 14(3):307–314CrossRef
go back to reference Hosu BG, Jakab K, Bánki P, Tóth FI, Forgacs G (2003) Magnetic tweezers for intracellular applications. Rev Sci Instrum 74(9):4158–4163CrossRef Hosu BG, Jakab K, Bánki P, Tóth FI, Forgacs G (2003) Magnetic tweezers for intracellular applications. Rev Sci Instrum 74(9):4158–4163CrossRef
go back to reference Ikuta K, Makita S, Arimoto S (1991) Non-contact magnetic gear for micro transmission mechanism. In: Micro Electro Mechanical Systems, 1991, MEMS’91, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp 125–130 Ikuta K, Makita S, Arimoto S (1991) Non-contact magnetic gear for micro transmission mechanism. In: Micro Electro Mechanical Systems, 1991, MEMS’91, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp 125–130
go back to reference Khamesee MB, Shameli E (2005) Regulation technique for a large gap magnetic field for 3D non-contact manipulation. Mechatronics 15(9):1073–1087CrossRef Khamesee MB, Shameli E (2005) Regulation technique for a large gap magnetic field for 3D non-contact manipulation. Mechatronics 15(9):1073–1087CrossRef
go back to reference Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. Mechatron IEEE/ASME Trans 7(1):1–14CrossRef Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. Mechatron IEEE/ASME Trans 7(1):1–14CrossRef
go back to reference Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. Robot IEEE Trans 26(6):1006–1017CrossRef Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. Robot IEEE Trans 26(6):1006–1017CrossRef
go back to reference Li M, Rouf VT, Thompson MJ, Horsley DA (2012) Three-axis Lorentz-force magnetic sensor for electronic compass applications. Microelectromech Syst J 21(4):1002–1010CrossRef Li M, Rouf VT, Thompson MJ, Horsley DA (2012) Three-axis Lorentz-force magnetic sensor for electronic compass applications. Microelectromech Syst J 21(4):1002–1010CrossRef
go back to reference Liu C, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105(10):102014CrossRef Liu C, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105(10):102014CrossRef
go back to reference Mehrtash M, Khamesee MB (2010) Optimal motion control of magnetically levitated microrobot. In: Automation Science and Engineering (CASE), 2010 IEEE Conference, pp 521–526 Mehrtash M, Khamesee MB (2010) Optimal motion control of magnetically levitated microrobot. In: Automation Science and Engineering (CASE), 2010 IEEE Conference, pp 521–526
go back to reference Mehrtash M, Tsuda N, Khamesee MB (2011) Bilateral macro–micro teleoperation using magnetic levitation. Mechatron IEEE/ASME Trans 16(3):459–469CrossRef Mehrtash M, Tsuda N, Khamesee MB (2011) Bilateral macro–micro teleoperation using magnetic levitation. Mechatron IEEE/ASME Trans 16(3):459–469CrossRef
go back to reference Mehrtash M, Khamesee MB, Tsuda N, Chang JY (2012a) Motion control of a magnetically levitated microrobot using magnetic flux measurement. Microsyst Technol 18(9–10):1417–1424CrossRef Mehrtash M, Khamesee MB, Tsuda N, Chang JY (2012a) Motion control of a magnetically levitated microrobot using magnetic flux measurement. Microsyst Technol 18(9–10):1417–1424CrossRef
go back to reference Mehrtash M, Khamesee MB, Tarao S, Tsuda N, Chang JY (2012b) Human-assisted virtual reality for a magnetic-haptic micromanipulation platform. Microsyst Technol 18(9–10):1407–1415CrossRef Mehrtash M, Khamesee MB, Tarao S, Tsuda N, Chang JY (2012b) Human-assisted virtual reality for a magnetic-haptic micromanipulation platform. Microsyst Technol 18(9–10):1407–1415CrossRef
go back to reference Mehrtash M, Zhang X, Khamesee MB (2015) Bilateral magnetic micromanipulation using off-board force sensor. Mechatron IEEE/ASME Trans 20(6):3223–3231CrossRef Mehrtash M, Zhang X, Khamesee MB (2015) Bilateral magnetic micromanipulation using off-board force sensor. Mechatron IEEE/ASME Trans 20(6):3223–3231CrossRef
go back to reference Nagaraj HS (1988) Investigation of magnetic fields and forces arising in open-circuit-type magnetic bearings. Tribol Trans 31(2):192–201CrossRef Nagaraj HS (1988) Investigation of magnetic fields and forces arising in open-circuit-type magnetic bearings. Tribol Trans 31(2):192–201CrossRef
go back to reference Nam J, Yeon T, Jang G (2014) Development of a linear vibration motor with fast response time for mobile phones. Microsyst Technol 20(8–9):1505–1510CrossRef Nam J, Yeon T, Jang G (2014) Development of a linear vibration motor with fast response time for mobile phones. Microsyst Technol 20(8–9):1505–1510CrossRef
go back to reference Niu F, Ma W, Chu HK, Ji H, Yang J, Sun D (2015) An electromagnetic system for magnetic microbead’s manipulation. In: Mechatronics and Automation (ICMA), 2015 IEEE International Conference, pp 1005–1010 Niu F, Ma W, Chu HK, Ji H, Yang J, Sun D (2015) An electromagnetic system for magnetic microbead’s manipulation. In: Mechatronics and Automation (ICMA), 2015 IEEE International Conference, pp 1005–1010
go back to reference Okyay A, Khamesee MB, Erkorkmaz K (2015) Design and optimization of a voice coil actuator for precision motion applications. IEEE Trans Magn 51(6):1–10CrossRef Okyay A, Khamesee MB, Erkorkmaz K (2015) Design and optimization of a voice coil actuator for precision motion applications. IEEE Trans Magn 51(6):1–10CrossRef
go back to reference Pandian SR, Hayakawa Y, Kanazawa Y, Kamoyama Y, Kawamura S (1997) Practical design of a sliding mode controller for pneumatic actuators. J Dyn Syst Meas Control 119(4):666–674CrossRefMATH Pandian SR, Hayakawa Y, Kanazawa Y, Kamoyama Y, Kawamura S (1997) Practical design of a sliding mode controller for pneumatic actuators. J Dyn Syst Meas Control 119(4):666–674CrossRefMATH
go back to reference Ravaud R, Lemarquand G, Babic S, Lemarquand V, Akyel C (2010) Cylindrical magnets and coils: fields, forces, and inductances. Magn IEEE Trans 46(9):3585–3590CrossRef Ravaud R, Lemarquand G, Babic S, Lemarquand V, Akyel C (2010) Cylindrical magnets and coils: fields, forces, and inductances. Magn IEEE Trans 46(9):3585–3590CrossRef
go back to reference Robertson W, Cazzolato B, Zander A (2011) A simplified force equation for coaxial cylindrical magnets and thin coils. Magn IEEE Trans 47(8):2045–2049CrossRef Robertson W, Cazzolato B, Zander A (2011) A simplified force equation for coaxial cylindrical magnets and thin coils. Magn IEEE Trans 47(8):2045–2049CrossRef
go back to reference Robertson W, Cazzolato B, Zander A (2012) Axial force between a thick coil and a cylindrical permanent magnet: optimizing the geometry of an electromagnetic actuator. Magn IEEE Trans 48(9):2479–2487CrossRef Robertson W, Cazzolato B, Zander A (2012) Axial force between a thick coil and a cylindrical permanent magnet: optimizing the geometry of an electromagnetic actuator. Magn IEEE Trans 48(9):2479–2487CrossRef
go back to reference Seo DG, Han W, Cho YH (2015) A compact electromagnetic micro-actuator using the meander springs partially exposed to magnetic field. Microsyst Technol 21(6):1233–1239CrossRef Seo DG, Han W, Cho YH (2015) A compact electromagnetic micro-actuator using the meander springs partially exposed to magnetic field. Microsyst Technol 21(6):1233–1239CrossRef
go back to reference Syahputra HP, Yang HM, Chung BM, Ko TJ (2012) Dual-stage feed drive for precision positioning on milling machine. In: Precision Assembly Technologies and Systems. Springer, Berlin, pp 81–88 Syahputra HP, Yang HM, Chung BM, Ko TJ (2012) Dual-stage feed drive for precision positioning on milling machine. In: Precision Assembly Technologies and Systems. Springer, Berlin, pp 81–88
go back to reference Tarao S, Mehrtash M,Tsuda N, Khamesee MB (2011) Motion simulator for a multi-degree-of-freedom magnetically levitated robot. In: System Integration (SII), 2011 IEEE/SICE International Symposium, pp 869–874 Tarao S, Mehrtash M,Tsuda N, Khamesee MB (2011) Motion simulator for a multi-degree-of-freedom magnetically levitated robot. In: System Integration (SII), 2011 IEEE/SICE International Symposium, pp 869–874
go back to reference Testa JF, CC Camuso (1998) Magnetic tool and object holder. U.S. Patent 5,760,668, issued June 2, 1998 Testa JF, CC Camuso (1998) Magnetic tool and object holder. U.S. Patent 5,760,668, issued June 2, 1998
go back to reference Wang QM, Zhang Q, Xu B, Liu R, Cross LE (1999) Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J Appl Phys 86(6):3352–3360CrossRef Wang QM, Zhang Q, Xu B, Liu R, Cross LE (1999) Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J Appl Phys 86(6):3352–3360CrossRef
go back to reference Wang DH, Yang Q, Dong HM (2013) A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. Mechatron IEEE/ASME Trans 18(1):138–147CrossRef Wang DH, Yang Q, Dong HM (2013) A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. Mechatron IEEE/ASME Trans 18(1):138–147CrossRef
go back to reference Weise K, Carlstedt M, Ziolkowski M, Brauer H, Toepfer H (2015) Lorentz force on permanent magnet rings by moving electrical conductors. IEEE Trans Magn 51(12):1–11CrossRef Weise K, Carlstedt M, Ziolkowski M, Brauer H, Toepfer H (2015) Lorentz force on permanent magnet rings by moving electrical conductors. IEEE Trans Magn 51(12):1–11CrossRef
go back to reference Zhang X, Mehrtash M, Khamesee MB (2016) Dual-axial motion control of a magnetic levitation system using hall-effect sensors. IEEE/ASME Trans Mechatron 21(2):1129–1139CrossRef Zhang X, Mehrtash M, Khamesee MB (2016) Dual-axial motion control of a magnetic levitation system using hall-effect sensors. IEEE/ASME Trans Mechatron 21(2):1129–1139CrossRef
Metadata
Title
Design and optimization of a novel magnetically-actuated micromanipulator
Authors
Mohammad Al Mashagbeh
Thamir Al-dulaimi
Mir Behrad Khamesee
Publication date
22-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 8/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3177-8

Other articles of this Issue 8/2017

Microsystem Technologies 8/2017 Go to the issue