Skip to main content
Top
Published in: Experimental Mechanics 8/2017

19-05-2017

Design, Manufacture, and Quasi-Static Testing of Metallic Negative Stiffness Structures within a Polymer Matrix

Authors: S . Cortes, J. Allison, C. Morris, M. R. Haberman, C. C. Seepersad, D. Kovar

Published in: Experimental Mechanics | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A composite material system comprised of a monostable negative stiffness (NS) structure within a polymer matrix was designed, fabricated, and experimentally evaluated. The monostable negative stiffness (NS) structure was designed using a combination of analytical and numerical models and manufactured in stainless steel. The NS structure was arranged in parallel with different polymer matrices to experimentally evaluate the effects of the matrix properties on the overall stiffness and energy dissipation of the composite NS-matrix system when loaded in uniaxial compression. A strong influence of the matrix properties on the stiffness and energy absorption capacity of the composite system was observed. Unlike conventional composites for which there is a natural tradeoff between stiffness and energy absorption capacity, the composite NS-matrix system enhanced stiffness while simultaneously improving energy absorption relative to a neat matrix, but only when the stiffness of the matrix was carefully matched to the stiffness of the NS structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I.L. Vér (editor), L.L. Beranek (editor) (2006) Chapter 8. Sound-Absorbing Materials and Sound Absorbers, K. Attenborough, L. Vér. Chapter 14, Structural Damping, E.E. Ungar, J.A. Zpfe, in Noise and Vibration Control Engineering, Hoboken, NJ, John Wiley & Sons, Inc. I.L. Vér (editor), L.L. Beranek (editor) (2006) Chapter 8. Sound-Absorbing Materials and Sound Absorbers, K. Attenborough, L. Vér. Chapter 14, Structural Damping, E.E. Ungar, J.A. Zpfe, in Noise and Vibration Control Engineering, Hoboken, NJ, John Wiley & Sons, Inc.
2.
go back to reference Sun CT, Lu YP (1995) Vibration damping of structural elements. Prentice Hall, Englewood CliffMATH Sun CT, Lu YP (1995) Vibration damping of structural elements. Prentice Hall, Englewood CliffMATH
3.
go back to reference Jarzynski J (1990) Chapter 10. Mechanisms of Sound attenuation in materials. In: Sound and vibration damping with polymers. American Chemical Society, Washington D.C., pp 116–207 Jarzynski J (1990) Chapter 10. Mechanisms of Sound attenuation in materials. In: Sound and vibration damping with polymers. American Chemical Society, Washington D.C., pp 116–207
4.
go back to reference Dall’Astaa A, Ragnib L (2006) Experimental tests and analytical model of high damping rubber dissipating devices. Eng Struct 28:1874–1884CrossRef Dall’Astaa A, Ragnib L (2006) Experimental tests and analytical model of high damping rubber dissipating devices. Eng Struct 28:1874–1884CrossRef
5.
go back to reference Chung DDL (2003) Structural composite materials tailored for damping. J Alloys Compd 355:216–223CrossRef Chung DDL (2003) Structural composite materials tailored for damping. J Alloys Compd 355:216–223CrossRef
6.
go back to reference Zhao X, Yang J, Zhao D, Lu Y, Wang W, Zhang L, Nishi T (2015) Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties. Intern J Smart Nano Mat 6(4):239–250CrossRef Zhao X, Yang J, Zhao D, Lu Y, Wang W, Zhang L, Nishi T (2015) Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties. Intern J Smart Nano Mat 6(4):239–250CrossRef
7.
go back to reference Byers L, Gandhi F (2009) Embedded absorbers for helicopter rotor lag damping. J Sound Vib 325:705–721CrossRef Byers L, Gandhi F (2009) Embedded absorbers for helicopter rotor lag damping. J Sound Vib 325:705–721CrossRef
8.
go back to reference Gu HS, Itoh Y (2010) Ageing behaviour of natural rubber and high damping rubber materials used in bridge rubber bearings. Adv Struct Eng 13(6):1105–1113CrossRef Gu HS, Itoh Y (2010) Ageing behaviour of natural rubber and high damping rubber materials used in bridge rubber bearings. Adv Struct Eng 13(6):1105–1113CrossRef
9.
go back to reference Rasuo B (2010) Experimental study of structural damping of composite helicopter blades with different cores. Plastics Rubber Comp 39(1):1–5CrossRef Rasuo B (2010) Experimental study of structural damping of composite helicopter blades with different cores. Plastics Rubber Comp 39(1):1–5CrossRef
10.
go back to reference Kumar R, Kant R, Pandey S, Asfer M, Bhattacharya B, Panigrahi PK, Bhattacharya S (2013) Passive vibration damping using polymer pads with microchannel arrays. J Microelectromech Syst 22(3):695–707CrossRef Kumar R, Kant R, Pandey S, Asfer M, Bhattacharya B, Panigrahi PK, Bhattacharya S (2013) Passive vibration damping using polymer pads with microchannel arrays. J Microelectromech Syst 22(3):695–707CrossRef
12.
go back to reference Lakes, R. S. (Eds) K. Golden, G. Grimmert, R. James, G. Milton, P. Sen, "Elastic freedom in cellular solids and composite materials in Mathematics of Multiscale Materials, NY, Springer, 1998, pp. 129–153. Lakes, R. S. (Eds) K. Golden, G. Grimmert, R. James, G. Milton, P. Sen, "Elastic freedom in cellular solids and composite materials in Mathematics of Multiscale Materials, NY, Springer, 1998, pp. 129–153.
13.
go back to reference Lakes RS (2001) Extreme damping in composite materials with a negative stiffness phase. Phys Rev Lett 86(13):2897–2900CrossRef Lakes RS (2001) Extreme damping in composite materials with a negative stiffness phase. Phys Rev Lett 86(13):2897–2900CrossRef
14.
go back to reference Wang YC, Ludwigson M, Lakes RS (2004) Deformation of extreme viscoelastic metals and composites. Mater Sci Eng 370:41–49CrossRef Wang YC, Ludwigson M, Lakes RS (2004) Deformation of extreme viscoelastic metals and composites. Mater Sci Eng 370:41–49CrossRef
15.
go back to reference Callister WD, Rethwisch DG (2009) Materials science and engineering and introduction. Wiley, Hoboken Callister WD, Rethwisch DG (2009) Materials science and engineering and introduction. Wiley, Hoboken
16.
go back to reference Qiu J, Lang JH, Slocum AH (2004) A curved-beam Bistable mechanism. J Microelectromech Syst 13(2):137–146CrossRef Qiu J, Lang JH, Slocum AH (2004) A curved-beam Bistable mechanism. J Microelectromech Syst 13(2):137–146CrossRef
17.
go back to reference Lakes RS, Lee T, Bersie A, Wang YC (2001) Extreme damping in composite materials with negative stiffness inclusions. Nature 410:565–567CrossRef Lakes RS, Lee T, Bersie A, Wang YC (2001) Extreme damping in composite materials with negative stiffness inclusions. Nature 410:565–567CrossRef
18.
go back to reference Vangbo M (1998) An analytical analysis of a compressed Bistable buckled beam. Sensors Actuators A Phys 69(3):212–216 Vangbo M (1998) An analytical analysis of a compressed Bistable buckled beam. Sensors Actuators A Phys 69(3):212–216
19.
go back to reference Klatt T, Haberman MR (2013) A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscale material model. J Appl Phys 114:033503 Klatt T, Haberman MR (2013) A nonlinear negative stiffness metamaterial unit cell and small-on-large multiscale material model. J Appl Phys 114:033503
20.
go back to reference Alabuzhev P, Gritchin A, Kim L, Migirenko G, Chon V, Stepanov P (1989) Vibration protecting and measuring systems with quasi-zero stiffness. CRC Press, Hemisphere, New York Alabuzhev P, Gritchin A, Kim L, Migirenko G, Chon V, Stepanov P (1989) Vibration protecting and measuring systems with quasi-zero stiffness. CRC Press, Hemisphere, New York
21.
go back to reference Balandin DV, Bolotnik NN, Pilkey WD (2001) Optimal protection from impact, shock, and vibration. Taylor and Francis, Philadelphia Balandin DV, Bolotnik NN, Pilkey WD (2001) Optimal protection from impact, shock, and vibration. Taylor and Francis, Philadelphia
22.
go back to reference Kent RW, Balandin DV, Bolotnik NN, Pilkey WD, Purtsezov (2007) Optimal control of restraint forces in an automobile impact. J Dyn Syst Meas Control 129:415–424CrossRef Kent RW, Balandin DV, Bolotnik NN, Pilkey WD, Purtsezov (2007) Optimal control of restraint forces in an automobile impact. J Dyn Syst Meas Control 129:415–424CrossRef
23.
go back to reference Platus DL (1999) Negative-stiffness-mechanism vibration isolation systems, in SPIE conference on current developments in vibration Control for Optomechanical systems. Vol. 3786, Denver Platus DL (1999) Negative-stiffness-mechanism vibration isolation systems, in SPIE conference on current developments in vibration Control for Optomechanical systems. Vol. 3786, Denver
24.
go back to reference Fulcher BA, Shahan DW, Haberman MR, Seepersad CC, Wilson PS (2014) Analytical and Experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J Vib Acoust 136(031009):1–12 Fulcher BA, Shahan DW, Haberman MR, Seepersad CC, Wilson PS (2014) Analytical and Experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J Vib Acoust 136(031009):1–12
25.
go back to reference Kashdan L, Seepersad C, Haberman M, Preston SW (2012) Design, fabrication, and evaluation of negative stiffness elements using SLS. Rapid Prototyp J 18:194–200CrossRef Kashdan L, Seepersad C, Haberman M, Preston SW (2012) Design, fabrication, and evaluation of negative stiffness elements using SLS. Rapid Prototyp J 18:194–200CrossRef
26.
go back to reference Correa DM, Klatt T, Cortes S, Haberman M, Kovar D, Seepersad C (2015) Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyp J 21(2):193–200CrossRef Correa DM, Klatt T, Cortes S, Haberman M, Kovar D, Seepersad C (2015) Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyp J 21(2):193–200CrossRef
27.
go back to reference Correa DM, Seepersad CC, Haberman MR (2015) Mechanical design of negative stiffness honeycomb materials. Integr Mat Manufac Innov 10(4):1–11 Correa DM, Seepersad CC, Haberman MR (2015) Mechanical design of negative stiffness honeycomb materials. Integr Mat Manufac Innov 10(4):1–11
28.
go back to reference Shan S, Kang SH, Raney JR, Wang P, Fang L, Candido F, Lewis JA, Bertoldi K (2015) Multistable architected materials for trapping elastic strain energy. Adv Mater 27(29):4296–4301CrossRef Shan S, Kang SH, Raney JR, Wang P, Fang L, Candido F, Lewis JA, Bertoldi K (2015) Multistable architected materials for trapping elastic strain energy. Adv Mater 27(29):4296–4301CrossRef
29.
go back to reference Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935CrossRef Rafsanjani A, Akbarzadeh A, Pasini D (2015) Snapping mechanical metamaterials under tension. Adv Mater 27(39):5931–5935CrossRef
30.
go back to reference Pontecorvo ME, Barbarino S, Murray GJ, Gandhi FS (2012) Bistable arches for morphing applications. J Intell Mater Syst Struct 24(3):274–286CrossRef Pontecorvo ME, Barbarino S, Murray GJ, Gandhi FS (2012) Bistable arches for morphing applications. J Intell Mater Syst Struct 24(3):274–286CrossRef
31.
go back to reference Harne RL, Wu Z, Wang KW (2016) Designing and harnessing the metastable states of a modular Metastructure for programmable mechanical properties adaptation. J Mech Des 138(2):1–9 Harne RL, Wu Z, Wang KW (2016) Designing and harnessing the metastable states of a modular Metastructure for programmable mechanical properties adaptation. J Mech Des 138(2):1–9
32.
go back to reference Restrepo D, Mankame ND, Zavttieri P (2015) Phase transforming cellular materials. Ext Mech Lett 4:52–60CrossRef Restrepo D, Mankame ND, Zavttieri P (2015) Phase transforming cellular materials. Ext Mech Lett 4:52–60CrossRef
33.
go back to reference Florijn B, Coulais C, van Hecke M (2014) Programmable Mechanical Metamaterials. Phys Rev Lett 113(17):175503CrossRef Florijn B, Coulais C, van Hecke M (2014) Programmable Mechanical Metamaterials. Phys Rev Lett 113(17):175503CrossRef
34.
go back to reference Fritzen F, Kochmann DM (2014) Material instability-induced extreme damping in composites: a computational study. Int J S Struct 51:4101–4112CrossRef Fritzen F, Kochmann DM (2014) Material instability-induced extreme damping in composites: a computational study. Int J S Struct 51:4101–4112CrossRef
38.
go back to reference Roland CM (2006) Mechanical behavior of rubber at high strain rates. Rubber Chem Technol 79:429–459 Roland CM (2006) Mechanical behavior of rubber at high strain rates. Rubber Chem Technol 79:429–459
Metadata
Title
Design, Manufacture, and Quasi-Static Testing of Metallic Negative Stiffness Structures within a Polymer Matrix
Authors
S . Cortes
J. Allison
C. Morris
M. R. Haberman
C. C. Seepersad
D. Kovar
Publication date
19-05-2017
Publisher
Springer US
Published in
Experimental Mechanics / Issue 8/2017
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-017-0290-2

Other articles of this Issue 8/2017

Experimental Mechanics 8/2017 Go to the issue

Premium Partners