Skip to main content
Top
Published in: Microsystem Technologies 7/2018

26-12-2017 | Technical Paper

Design of a XYZ scanner for home-made high-speed atomic force microscopy

Authors: Kunhai Cai, Xianbin He, Yanling Tian, Xianping Liu, Dawei Zhang, Bijan Shirinzadeh

Published in: Microsystem Technologies | Issue 7/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Atomic force microscopy (AFM) is a useful tool in nanoscale measurement. However, conventional AFM suffers from slow scan speed, limiting the use for biological detection or nanofabrication, due to the limited bandwidth of AFM components. In which the resonant frequency of the AFM scanner is usually too low to achieve high-speed scanning. In this paper, a simple and compact home-made high-speed AFM is set up and reported. As an important part of the scanning system, a parallel kinematic piezoelectric actuator (PZT) XYZ scanner is proposed, which can achieve high bandwidth and low coupling errors. Finite element analysis (FEA) is adopted to characterize the scanner, and verified the first two lateral resonance frequency of 5.6 kHz and the vertical resonance frequency is 29 kHz. In addition, some testing experiments are implemented, demonstrating feasibility of the proposed scanner. Finally, it was applied to the home-made AFM system, and some effective scanning imaging results can be obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adams JD, Erickson BW, Grossenbacher J, Brugger J, Nievergelt A, Fantner GE (2015) Harnessing the damping properties of materials for high-speed atomic force microscopy. Nat Nanotechnol 11:1–6 Adams JD, Erickson BW, Grossenbacher J, Brugger J, Nievergelt A, Fantner GE (2015) Harnessing the damping properties of materials for high-speed atomic force microscopy. Nat Nanotechnol 11:1–6
go back to reference Ando T (2012) High-speed atomic force microscopy coming of age. Nanotechnology 23(6):62001CrossRef Ando T (2012) High-speed atomic force microscopy coming of age. Nanotechnology 23(6):62001CrossRef
go back to reference Ando T, Kodera N, Maruyama D, Takai E, Saito K, Toda A (2002) Ahigh-speed atomic force microscope for studying biological macromolecules in action. Jpn J Appl Phys 41(7B):4851–4856CrossRef Ando T, Kodera N, Maruyama D, Takai E, Saito K, Toda A (2002) Ahigh-speed atomic force microscope for studying biological macromolecules in action. Jpn J Appl Phys 41(7B):4851–4856CrossRef
go back to reference Ando T, Uchihashi T, Kodera N (2007) High-speed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit 20(6):448–458CrossRef Ando T, Uchihashi T, Kodera N (2007) High-speed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit 20(6):448–458CrossRef
go back to reference Ando T, Uchihashi T, Kodera N (2008) High-speed afm and nano-visualization of biomolecular processes. Pflug Archeur J Physiol 456(1):211–225CrossRef Ando T, Uchihashi T, Kodera N (2008) High-speed afm and nano-visualization of biomolecular processes. Pflug Archeur J Physiol 456(1):211–225CrossRef
go back to reference Binnig G, Rohrer H, Gerber Ch, Weibe E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57CrossRef Binnig G, Rohrer H, Gerber Ch, Weibe E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57CrossRef
go back to reference Binnig G, Quate CF, Gerber Ch (1986) Atomic force microscope. Phys Rev Lett 56:930CrossRef Binnig G, Quate CF, Gerber Ch (1986) Atomic force microscope. Phys Rev Lett 56:930CrossRef
go back to reference Cai K, Tian Y, Wang F, Zhang D, Liu X, Shirinzadeh B (2017a) Modeling and tracking control of a novel XY theta Z stage. Microsyst Technol 23(8):3575–3588CrossRef Cai K, Tian Y, Wang F, Zhang D, Liu X, Shirinzadeh B (2017a) Modeling and tracking control of a novel XY theta Z stage. Microsyst Technol 23(8):3575–3588CrossRef
go back to reference Cai K, Tian Y, Wang F, Zhang D, Shirinzadeh B (2017b) Design and control of a 6-degrees-of-freedom precision positioning system. Robot Cim Int Manuf 44:77–96CrossRef Cai K, Tian Y, Wang F, Zhang D, Shirinzadeh B (2017b) Design and control of a 6-degrees-of-freedom precision positioning system. Robot Cim Int Manuf 44:77–96CrossRef
go back to reference Kenton B, Leang K (2012) Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Trans Mechatron 17(2):356–369CrossRef Kenton B, Leang K (2012) Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Trans Mechatron 17(2):356–369CrossRef
go back to reference Kim D, Kang D, Shim J, Song I, Gweon D (2005) Optimal design of a flexure hinge-based XYZ atomic force microscopy scanner for minimizing Abbe errors. Rev Sci Instrum 76(7):1–6 Kim D, Kang D, Shim J, Song I, Gweon D (2005) Optimal design of a flexure hinge-based XYZ atomic force microscopy scanner for minimizing Abbe errors. Rev Sci Instrum 76(7):1–6
go back to reference Kitazawa M, Shiotani K, Toda A (2003) Batch fabrication of sharpened silicon nitride tips. Jpn J Appl Phys 42:4844–4847CrossRef Kitazawa M, Shiotani K, Toda A (2003) Batch fabrication of sharpened silicon nitride tips. Jpn J Appl Phys 42:4844–4847CrossRef
go back to reference Klapetek P, Valtr M, Picco L, Payton OD, Martinek J, Yacoot A, Miles M (2015) Large area high-speed metrology SPM system. Nanotechnology 26(6):1–9CrossRef Klapetek P, Valtr M, Picco L, Payton OD, Martinek J, Yacoot A, Miles M (2015) Large area high-speed metrology SPM system. Nanotechnology 26(6):1–9CrossRef
go back to reference Leang KK, Fleming AJ (2009) High-speed serial-kinematic SPM scanner: design and drive consideration. Asian J. Control 11(2):144–153CrossRef Leang KK, Fleming AJ (2009) High-speed serial-kinematic SPM scanner: design and drive consideration. Asian J. Control 11(2):144–153CrossRef
go back to reference Li CX, Gu GY, Yang MJ, Zhu LM (2013) Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage. Rev Sci Instrum 84(12):1–12 Li CX, Gu GY, Yang MJ, Zhu LM (2013) Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage. Rev Sci Instrum 84(12):1–12
go back to reference Schitter G, Astrom KJ, DeMartini BE (2007) Design and modeling of a high-speed afm-scanner. IEEE Trans Control Syst Technol 15(5):906–915CrossRef Schitter G, Astrom KJ, DeMartini BE (2007) Design and modeling of a high-speed afm-scanner. IEEE Trans Control Syst Technol 15(5):906–915CrossRef
go back to reference Schitter G, Thurner PJ, Hansma PK (2008) Design and input-shaping control of a novel scanner for high-speed atomic force microscopy. Mechatronics 18(5–6):282–288CrossRef Schitter G, Thurner PJ, Hansma PK (2008) Design and input-shaping control of a novel scanner for high-speed atomic force microscopy. Mechatronics 18(5–6):282–288CrossRef
go back to reference Tseng AA (2011) Advancements and challenges in development of atomic force microscopy for nanofabrication. Nano Today. 6(5):493–509CrossRef Tseng AA (2011) Advancements and challenges in development of atomic force microscopy for nanofabrication. Nano Today. 6(5):493–509CrossRef
go back to reference Vicary JA, Miles MJ (2009) Real-time nanofabrication with high-speed atomic force microscopy. Nanotechnology 20(9):95302CrossRef Vicary JA, Miles MJ (2009) Real-time nanofabrication with high-speed atomic force microscopy. Nanotechnology 20(9):95302CrossRef
go back to reference Wadikhaye SP, Yong YK, Moheimani SOR (2012) Design of a compact serial-kinematic scanner for high-speed atomic force microscopy: an analytical approach. Micro Nano Lett 7(4):309–313CrossRef Wadikhaye SP, Yong YK, Moheimani SOR (2012) Design of a compact serial-kinematic scanner for high-speed atomic force microscopy: an analytical approach. Micro Nano Lett 7(4):309–313CrossRef
go back to reference Yong YK, Moheimani SOR (2013) Design, modeling, and FPAA-based control of a high-speed atomic force microscope nanopositioner. IEEE/ASME Trans Mechatron 18(3):1060–1071CrossRef Yong YK, Moheimani SOR (2013) Design, modeling, and FPAA-based control of a high-speed atomic force microscope nanopositioner. IEEE/ASME Trans Mechatron 18(3):1060–1071CrossRef
go back to reference Yong YK, Moheimani SOR (2015) Collocated z-axis control of a high-speed nanopositioner for video-rate atomic force microscopy. IEEE Trans Nanotechnol 14(2):338–345CrossRef Yong YK, Moheimani SOR (2015) Collocated z-axis control of a high-speed nanopositioner for video-rate atomic force microscopy. IEEE Trans Nanotechnol 14(2):338–345CrossRef
Metadata
Title
Design of a XYZ scanner for home-made high-speed atomic force microscopy
Authors
Kunhai Cai
Xianbin He
Yanling Tian
Xianping Liu
Dawei Zhang
Bijan Shirinzadeh
Publication date
26-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 7/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3674-4

Other articles of this Issue 7/2018

Microsystem Technologies 7/2018 Go to the issue