Skip to main content
Top
Published in: Wireless Networks 5/2023

14-03-2023 | Original Paper

Design of an adaptive framework with compressive sensing for spatial data in wireless sensor networks

Authors: C. Sureshkumar, S. Sabena

Published in: Wireless Networks | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless Sensor Networks (WSNs) gather active sensor data within a specified period to the sink node. The data transmission in restricted resource utilization in wireless surroundings is a primary issue. Compressive sensing enables resource utilization based on spatial data by exploiting the transfer of limited measurements according to the original signals. In this paper, an Adaptive Adjacent based Compressive Sensing (AACS) methodology is proposed for effective data construction in spatial-related wireless sensor networks. A sparse Matrix is constructed with the coordinates of location and position for data transmission. The fuzzy logic is used to find the best forwarder among the sensor nodes in the network using the parameters of Mobility, Energy, and Fuzzy cost. Within a sensing time, the sensor node forwards the data around the time to the adjacent node according to a correlation. The communication time provides proficient enhancement with compressed data with AACS and sparse index. Therefore, AACS gives a reduced amount of communication and maximizes accuracy. AACS is compared with the related techniques and the results prove that the proposed methodology performed well in the performance metrics. The performance analysis shows that the proposed technique has produced 54.7% of network throughput than the relevant technique, 76.9% lesser routing overhead, and 44% of minimized relative error.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Alwan, N. A. S., & Zahir, M. (2018). Compressive sensing for localization in wireless sensor networks: An approach for energy and error control. IET Wireless Sensor Systems, 8, 116–120.CrossRef Alwan, N. A. S., & Zahir, M. (2018). Compressive sensing for localization in wireless sensor networks: An approach for energy and error control. IET Wireless Sensor Systems, 8, 116–120.CrossRef
3.
go back to reference Kaur, A., Kumar, P., & Gupta, G. P. (2018). Nature inspired algorithm-based improved variants of DV-hop algorithm for randomly deployed 2D and 3D wireless sensor networks. Wireless Personal Communications, 101, 567–582.CrossRef Kaur, A., Kumar, P., & Gupta, G. P. (2018). Nature inspired algorithm-based improved variants of DV-hop algorithm for randomly deployed 2D and 3D wireless sensor networks. Wireless Personal Communications, 101, 567–582.CrossRef
4.
go back to reference Sarvotham, S., Baron, D., Wakin, M., Duarte, M. F., & Baraniuk, R. G. (2005). Distributed compressed sensing of jointly sparse signals. In Asilomar conference on signals, systems, and computers (pp. 1537–1541). Sarvotham, S., Baron, D., Wakin, M., Duarte, M. F., & Baraniuk, R. G. (2005). Distributed compressed sensing of jointly sparse signals. In Asilomar conference on signals, systems, and computers (pp. 1537–1541).
5.
go back to reference Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation part I: Greedy pursuit. Signal Processing, 86(3), 572–588.CrossRefMATH Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation part I: Greedy pursuit. Signal Processing, 86(3), 572–588.CrossRefMATH
6.
go back to reference Djenouri, D., & Bagaa, M. (2017). Energy-aware constrained relay node deployment for sustainable wireless sensor networks. IEEE Transactions on Sustainable Computing, 2(1), 30–42.CrossRef Djenouri, D., & Bagaa, M. (2017). Energy-aware constrained relay node deployment for sustainable wireless sensor networks. IEEE Transactions on Sustainable Computing, 2(1), 30–42.CrossRef
7.
go back to reference Wang, Z., Zhang, L., Zheng, Z., & Wang, J. (2018). Energy balancing RPL protocol with multipath for wireless sensor networks. Peer-to-Peer Networking and Applications, 11(5), 1085–1100.CrossRef Wang, Z., Zhang, L., Zheng, Z., & Wang, J. (2018). Energy balancing RPL protocol with multipath for wireless sensor networks. Peer-to-Peer Networking and Applications, 11(5), 1085–1100.CrossRef
8.
go back to reference Guanghui, H., & Licui, Z. (2018). WPO-EECRP: Energy-efficient clustering routing protocol based on weighting and parameter optimization in WSN. Wireless Personal Communications, 98(1), 1171–1205.CrossRef Guanghui, H., & Licui, Z. (2018). WPO-EECRP: Energy-efficient clustering routing protocol based on weighting and parameter optimization in WSN. Wireless Personal Communications, 98(1), 1171–1205.CrossRef
10.
go back to reference Qin, Z., Fan, J., Liu, Y., Gao, Y., & Li, G. Y. (2018). Sparse representation for wireless communications: A compressive sensing approach. IEEE Signal Processing Magazine, 35(3), 40–58.CrossRef Qin, Z., Fan, J., Liu, Y., Gao, Y., & Li, G. Y. (2018). Sparse representation for wireless communications: A compressive sensing approach. IEEE Signal Processing Magazine, 35(3), 40–58.CrossRef
11.
go back to reference Liu, Y., Han, G. J., Shi, S. L., & Li, Z. Q. (1973). Downlink cooperative broadcast transmission based on superposition coding in a relaying system for future wireless sensor networks. Sensors, 2018, 18. Liu, Y., Han, G. J., Shi, S. L., & Li, Z. Q. (1973). Downlink cooperative broadcast transmission based on superposition coding in a relaying system for future wireless sensor networks. Sensors, 2018, 18.
12.
go back to reference Wan, L., Han, G., Shu, L., & Feng, N. (2018). The critical patients localization algorithm using sparse representation for mixed signals in emergency healthcare system. IEEE Systems Journal, 12(1), 52–63.CrossRef Wan, L., Han, G., Shu, L., & Feng, N. (2018). The critical patients localization algorithm using sparse representation for mixed signals in emergency healthcare system. IEEE Systems Journal, 12(1), 52–63.CrossRef
13.
go back to reference Zhang, P., Wang, J., & Guo, K. (2018). Compressive sensing and random walk based data collection in wireless sensor networks. Computer Communications, 129, 43–53.CrossRef Zhang, P., Wang, J., & Guo, K. (2018). Compressive sensing and random walk based data collection in wireless sensor networks. Computer Communications, 129, 43–53.CrossRef
14.
go back to reference Lan, X., Zhang, S., Yuen, P. C., & Chellappa, R. (2018). Learning common and feature-specific patterns: A novel multiple-sparse representation-based tracker. IEEE Transactions on Image Processing, 27(4), 2022–2037.MathSciNetCrossRefMATH Lan, X., Zhang, S., Yuen, P. C., & Chellappa, R. (2018). Learning common and feature-specific patterns: A novel multiple-sparse representation-based tracker. IEEE Transactions on Image Processing, 27(4), 2022–2037.MathSciNetCrossRefMATH
15.
go back to reference Luo, C., Wu, F., Sun, J., & Chen, C. W. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking (pp. 145–156). ACM. Luo, C., Wu, F., Sun, J., & Chen, C. W. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking (pp. 145–156). ACM.
16.
go back to reference Rauhut, H. (2010). Compressive sensing and structured random matrices. Theoretical Foundations and Numerical Methods for Sparse Recovery, 9, 1–92.MathSciNetMATH Rauhut, H. (2010). Compressive sensing and structured random matrices. Theoretical Foundations and Numerical Methods for Sparse Recovery, 9, 1–92.MathSciNetMATH
17.
go back to reference Cheng, J., Ye, Q., Jiang, H., Wang, D., & Wang, C. (2013). STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Transactions on Wireless Communications, 12(2), 850–861.CrossRef Cheng, J., Ye, Q., Jiang, H., Wang, D., & Wang, C. (2013). STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Transactions on Wireless Communications, 12(2), 850–861.CrossRef
18.
go back to reference Zhang, P., Wang, S., Guo, K., & Wang, J. (2018). A secure data collection scheme based on compressive sensing in wireless sensor networks. Ad Hoc Networks, 70, 73–84.CrossRef Zhang, P., Wang, S., Guo, K., & Wang, J. (2018). A secure data collection scheme based on compressive sensing in wireless sensor networks. Ad Hoc Networks, 70, 73–84.CrossRef
19.
go back to reference Do, T. T., Gan, L., Nguyen, N. H., & Tran, T. D. (2012). Fast and efficient compressive sensing using structurally random matrices. IEEE Transactions on Signal Processing, 60(1), 139–154.MathSciNetCrossRefMATH Do, T. T., Gan, L., Nguyen, N. H., & Tran, T. D. (2012). Fast and efficient compressive sensing using structurally random matrices. IEEE Transactions on Signal Processing, 60(1), 139–154.MathSciNetCrossRefMATH
20.
go back to reference Quan, L., Xiao, S., Xue, X., & Lu, C. (2016). Neighbor-aided spatial-temporal compressive data gathering in wireless sensor networks. IEEE Communications Letters, 20(3), 578–581.CrossRef Quan, L., Xiao, S., Xue, X., & Lu, C. (2016). Neighbor-aided spatial-temporal compressive data gathering in wireless sensor networks. IEEE Communications Letters, 20(3), 578–581.CrossRef
21.
go back to reference Leinonen, M., Codreanu, M., & Juntti, M. (2018). Distributed distortion-rate optimized compressed sensing in wireless sensor networks. IEEE Transactions on Communications, 66(4), 1609–1623.CrossRef Leinonen, M., Codreanu, M., & Juntti, M. (2018). Distributed distortion-rate optimized compressed sensing in wireless sensor networks. IEEE Transactions on Communications, 66(4), 1609–1623.CrossRef
22.
go back to reference Zhang, D. G., Zhang, T., Zhang, J., Dong, Y., & Zhang, X. D. (2018). A kind of effective data aggregating method based on compressive sensing for wireless sensor network. EURASIP Journal on Wireless Communications and Networking, 2018(1), 159.CrossRef Zhang, D. G., Zhang, T., Zhang, J., Dong, Y., & Zhang, X. D. (2018). A kind of effective data aggregating method based on compressive sensing for wireless sensor network. EURASIP Journal on Wireless Communications and Networking, 2018(1), 159.CrossRef
23.
go back to reference Sejdić, E., Orović, I., & Stanković, S. (2018). Compressive sensing meets time–frequency: An overview of recent advances in time–frequency processing of sparse signals. Digital Signal Processing, 77, 22–35.MathSciNetCrossRef Sejdić, E., Orović, I., & Stanković, S. (2018). Compressive sensing meets time–frequency: An overview of recent advances in time–frequency processing of sparse signals. Digital Signal Processing, 77, 22–35.MathSciNetCrossRef
24.
go back to reference Xiao, X., Song, X., & Lei, Q. (2018). Efficient measurement method for spatiotemporal compressive data gathering in wireless sensor networks. KSII Transactions on Internet and Information Systems, 12, 1618–1637. Xiao, X., Song, X., & Lei, Q. (2018). Efficient measurement method for spatiotemporal compressive data gathering in wireless sensor networks. KSII Transactions on Internet and Information Systems, 12, 1618–1637.
25.
go back to reference Zaeemzadeh, A., Joneidi, M., & Rahnavard, N. (2017). Adaptive non-uniform compressive sampling for time-varying signals. In 2017 51st Annual conference on information sciences and systems (CISS) (pp. 1–6). IEEE. Zaeemzadeh, A., Joneidi, M., & Rahnavard, N. (2017). Adaptive non-uniform compressive sampling for time-varying signals. In 2017 51st Annual conference on information sciences and systems (CISS) (pp. 1–6). IEEE.
26.
go back to reference Huang, J., & Soong, B. H. (2019). Cost-aware stochastic compressive data gathering for wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(2), 1525–1533.CrossRef Huang, J., & Soong, B. H. (2019). Cost-aware stochastic compressive data gathering for wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(2), 1525–1533.CrossRef
27.
go back to reference Han, Z., Zhang, X., Zhang, D. L., Zhang, G., & Ding, S. Y. A data gathering algorithm based on compressive sensing in lossy wireless sensor networks. In Proceedings of the 2nd international conference on frontiers of sensors technologies, Shenzhen, China, 14–16 April 2017 (pp. 146–153). Han, Z., Zhang, X., Zhang, D. L., Zhang, G., & Ding, S. Y. A data gathering algorithm based on compressive sensing in lossy wireless sensor networks. In Proceedings of the 2nd international conference on frontiers of sensors technologies, Shenzhen, China, 14–16 April 2017 (pp. 146–153).
28.
go back to reference Azarnia, G., Tinati, M. A., & Rezaii, T. Y. (2018). Cooperative and distributed algorithm for compressed sensing recovery in WSNs. IET Signal Processing, 12, 346–357.CrossRef Azarnia, G., Tinati, M. A., & Rezaii, T. Y. (2018). Cooperative and distributed algorithm for compressed sensing recovery in WSNs. IET Signal Processing, 12, 346–357.CrossRef
32.
go back to reference Dutt, S., Agrawal, S., & Vig, R. (2018). Cluster-head restricted energy efficient protocol (CREEP) for routing in heterogeneous wireless sensor networks. Wireless Personal Communications, 100, 1477–1497.CrossRef Dutt, S., Agrawal, S., & Vig, R. (2018). Cluster-head restricted energy efficient protocol (CREEP) for routing in heterogeneous wireless sensor networks. Wireless Personal Communications, 100, 1477–1497.CrossRef
33.
go back to reference Jari, A., & Avokh, A. (2021). Pso-based sink placement and load-balanced anycast routing in multi-sink wsns considering compressive sensing theory. Engineering Applications of Artificial Intelligence, 100, 104164.CrossRef Jari, A., & Avokh, A. (2021). Pso-based sink placement and load-balanced anycast routing in multi-sink wsns considering compressive sensing theory. Engineering Applications of Artificial Intelligence, 100, 104164.CrossRef
36.
go back to reference Yang, Y., Liu, H., & Hou, J. (2022). A compressed sensing measurement matrix construction method based on TDMA for wireless sensor networks. Entropy, 24(4), 493.MathSciNetCrossRef Yang, Y., Liu, H., & Hou, J. (2022). A compressed sensing measurement matrix construction method based on TDMA for wireless sensor networks. Entropy, 24(4), 493.MathSciNetCrossRef
37.
go back to reference Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1–13.CrossRef Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1–13.CrossRef
38.
go back to reference Movassagh, A. A., Alzubi, J. A., Gheisari, M., Rahimi, M., Mohan, S., Abbasi, A. A., & Nabipour, N. (2021). Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. Journal of Ambient Intelligence and Humanized Computing. Movassagh, A. A., Alzubi, J. A., Gheisari, M., Rahimi, M., Mohan, S., Abbasi, A. A., & Nabipour, N. (2021). Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. Journal of Ambient Intelligence and Humanized Computing.
39.
go back to reference Alzubi, J. A. (2020). Bipolar fully recurrent deep structured neural learning based attack detection for securing industrial sensor networks. Transactions on Emerging Telecommunications Technologies, 32(7), e4069. Alzubi, J. A. (2020). Bipolar fully recurrent deep structured neural learning based attack detection for securing industrial sensor networks. Transactions on Emerging Telecommunications Technologies, 32(7), e4069.
40.
go back to reference Gheisari, M., Alzubi, J., Zhang, X., Kose, U., & Saucedo, J. A. M. (2020). A new algorithm for optimization of quality of service in peer to peer wireless mesh networks. Wireless Networks, 26, 4965–4973.CrossRef Gheisari, M., Alzubi, J., Zhang, X., Kose, U., & Saucedo, J. A. M. (2020). A new algorithm for optimization of quality of service in peer to peer wireless mesh networks. Wireless Networks, 26, 4965–4973.CrossRef
Metadata
Title
Design of an adaptive framework with compressive sensing for spatial data in wireless sensor networks
Authors
C. Sureshkumar
S. Sabena
Publication date
14-03-2023
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2023
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-023-03291-y

Other articles of this Issue 5/2023

Wireless Networks 5/2023 Go to the issue