Skip to main content
Erschienen in: Wireless Networks 5/2023

14.03.2023 | Original Paper

Design of an adaptive framework with compressive sensing for spatial data in wireless sensor networks

verfasst von: C. Sureshkumar, S. Sabena

Erschienen in: Wireless Networks | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless Sensor Networks (WSNs) gather active sensor data within a specified period to the sink node. The data transmission in restricted resource utilization in wireless surroundings is a primary issue. Compressive sensing enables resource utilization based on spatial data by exploiting the transfer of limited measurements according to the original signals. In this paper, an Adaptive Adjacent based Compressive Sensing (AACS) methodology is proposed for effective data construction in spatial-related wireless sensor networks. A sparse Matrix is constructed with the coordinates of location and position for data transmission. The fuzzy logic is used to find the best forwarder among the sensor nodes in the network using the parameters of Mobility, Energy, and Fuzzy cost. Within a sensing time, the sensor node forwards the data around the time to the adjacent node according to a correlation. The communication time provides proficient enhancement with compressed data with AACS and sparse index. Therefore, AACS gives a reduced amount of communication and maximizes accuracy. AACS is compared with the related techniques and the results prove that the proposed methodology performed well in the performance metrics. The performance analysis shows that the proposed technique has produced 54.7% of network throughput than the relevant technique, 76.9% lesser routing overhead, and 44% of minimized relative error.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Alwan, N. A. S., & Zahir, M. (2018). Compressive sensing for localization in wireless sensor networks: An approach for energy and error control. IET Wireless Sensor Systems, 8, 116–120.CrossRef Alwan, N. A. S., & Zahir, M. (2018). Compressive sensing for localization in wireless sensor networks: An approach for energy and error control. IET Wireless Sensor Systems, 8, 116–120.CrossRef
3.
Zurück zum Zitat Kaur, A., Kumar, P., & Gupta, G. P. (2018). Nature inspired algorithm-based improved variants of DV-hop algorithm for randomly deployed 2D and 3D wireless sensor networks. Wireless Personal Communications, 101, 567–582.CrossRef Kaur, A., Kumar, P., & Gupta, G. P. (2018). Nature inspired algorithm-based improved variants of DV-hop algorithm for randomly deployed 2D and 3D wireless sensor networks. Wireless Personal Communications, 101, 567–582.CrossRef
4.
Zurück zum Zitat Sarvotham, S., Baron, D., Wakin, M., Duarte, M. F., & Baraniuk, R. G. (2005). Distributed compressed sensing of jointly sparse signals. In Asilomar conference on signals, systems, and computers (pp. 1537–1541). Sarvotham, S., Baron, D., Wakin, M., Duarte, M. F., & Baraniuk, R. G. (2005). Distributed compressed sensing of jointly sparse signals. In Asilomar conference on signals, systems, and computers (pp. 1537–1541).
5.
Zurück zum Zitat Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation part I: Greedy pursuit. Signal Processing, 86(3), 572–588.CrossRefMATH Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation part I: Greedy pursuit. Signal Processing, 86(3), 572–588.CrossRefMATH
6.
Zurück zum Zitat Djenouri, D., & Bagaa, M. (2017). Energy-aware constrained relay node deployment for sustainable wireless sensor networks. IEEE Transactions on Sustainable Computing, 2(1), 30–42.CrossRef Djenouri, D., & Bagaa, M. (2017). Energy-aware constrained relay node deployment for sustainable wireless sensor networks. IEEE Transactions on Sustainable Computing, 2(1), 30–42.CrossRef
7.
Zurück zum Zitat Wang, Z., Zhang, L., Zheng, Z., & Wang, J. (2018). Energy balancing RPL protocol with multipath for wireless sensor networks. Peer-to-Peer Networking and Applications, 11(5), 1085–1100.CrossRef Wang, Z., Zhang, L., Zheng, Z., & Wang, J. (2018). Energy balancing RPL protocol with multipath for wireless sensor networks. Peer-to-Peer Networking and Applications, 11(5), 1085–1100.CrossRef
8.
Zurück zum Zitat Guanghui, H., & Licui, Z. (2018). WPO-EECRP: Energy-efficient clustering routing protocol based on weighting and parameter optimization in WSN. Wireless Personal Communications, 98(1), 1171–1205.CrossRef Guanghui, H., & Licui, Z. (2018). WPO-EECRP: Energy-efficient clustering routing protocol based on weighting and parameter optimization in WSN. Wireless Personal Communications, 98(1), 1171–1205.CrossRef
10.
Zurück zum Zitat Qin, Z., Fan, J., Liu, Y., Gao, Y., & Li, G. Y. (2018). Sparse representation for wireless communications: A compressive sensing approach. IEEE Signal Processing Magazine, 35(3), 40–58.CrossRef Qin, Z., Fan, J., Liu, Y., Gao, Y., & Li, G. Y. (2018). Sparse representation for wireless communications: A compressive sensing approach. IEEE Signal Processing Magazine, 35(3), 40–58.CrossRef
11.
Zurück zum Zitat Liu, Y., Han, G. J., Shi, S. L., & Li, Z. Q. (1973). Downlink cooperative broadcast transmission based on superposition coding in a relaying system for future wireless sensor networks. Sensors, 2018, 18. Liu, Y., Han, G. J., Shi, S. L., & Li, Z. Q. (1973). Downlink cooperative broadcast transmission based on superposition coding in a relaying system for future wireless sensor networks. Sensors, 2018, 18.
12.
Zurück zum Zitat Wan, L., Han, G., Shu, L., & Feng, N. (2018). The critical patients localization algorithm using sparse representation for mixed signals in emergency healthcare system. IEEE Systems Journal, 12(1), 52–63.CrossRef Wan, L., Han, G., Shu, L., & Feng, N. (2018). The critical patients localization algorithm using sparse representation for mixed signals in emergency healthcare system. IEEE Systems Journal, 12(1), 52–63.CrossRef
13.
Zurück zum Zitat Zhang, P., Wang, J., & Guo, K. (2018). Compressive sensing and random walk based data collection in wireless sensor networks. Computer Communications, 129, 43–53.CrossRef Zhang, P., Wang, J., & Guo, K. (2018). Compressive sensing and random walk based data collection in wireless sensor networks. Computer Communications, 129, 43–53.CrossRef
14.
Zurück zum Zitat Lan, X., Zhang, S., Yuen, P. C., & Chellappa, R. (2018). Learning common and feature-specific patterns: A novel multiple-sparse representation-based tracker. IEEE Transactions on Image Processing, 27(4), 2022–2037.MathSciNetCrossRefMATH Lan, X., Zhang, S., Yuen, P. C., & Chellappa, R. (2018). Learning common and feature-specific patterns: A novel multiple-sparse representation-based tracker. IEEE Transactions on Image Processing, 27(4), 2022–2037.MathSciNetCrossRefMATH
15.
Zurück zum Zitat Luo, C., Wu, F., Sun, J., & Chen, C. W. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking (pp. 145–156). ACM. Luo, C., Wu, F., Sun, J., & Chen, C. W. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking (pp. 145–156). ACM.
16.
Zurück zum Zitat Rauhut, H. (2010). Compressive sensing and structured random matrices. Theoretical Foundations and Numerical Methods for Sparse Recovery, 9, 1–92.MathSciNetMATH Rauhut, H. (2010). Compressive sensing and structured random matrices. Theoretical Foundations and Numerical Methods for Sparse Recovery, 9, 1–92.MathSciNetMATH
17.
Zurück zum Zitat Cheng, J., Ye, Q., Jiang, H., Wang, D., & Wang, C. (2013). STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Transactions on Wireless Communications, 12(2), 850–861.CrossRef Cheng, J., Ye, Q., Jiang, H., Wang, D., & Wang, C. (2013). STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Transactions on Wireless Communications, 12(2), 850–861.CrossRef
18.
Zurück zum Zitat Zhang, P., Wang, S., Guo, K., & Wang, J. (2018). A secure data collection scheme based on compressive sensing in wireless sensor networks. Ad Hoc Networks, 70, 73–84.CrossRef Zhang, P., Wang, S., Guo, K., & Wang, J. (2018). A secure data collection scheme based on compressive sensing in wireless sensor networks. Ad Hoc Networks, 70, 73–84.CrossRef
19.
Zurück zum Zitat Do, T. T., Gan, L., Nguyen, N. H., & Tran, T. D. (2012). Fast and efficient compressive sensing using structurally random matrices. IEEE Transactions on Signal Processing, 60(1), 139–154.MathSciNetCrossRefMATH Do, T. T., Gan, L., Nguyen, N. H., & Tran, T. D. (2012). Fast and efficient compressive sensing using structurally random matrices. IEEE Transactions on Signal Processing, 60(1), 139–154.MathSciNetCrossRefMATH
20.
Zurück zum Zitat Quan, L., Xiao, S., Xue, X., & Lu, C. (2016). Neighbor-aided spatial-temporal compressive data gathering in wireless sensor networks. IEEE Communications Letters, 20(3), 578–581.CrossRef Quan, L., Xiao, S., Xue, X., & Lu, C. (2016). Neighbor-aided spatial-temporal compressive data gathering in wireless sensor networks. IEEE Communications Letters, 20(3), 578–581.CrossRef
21.
Zurück zum Zitat Leinonen, M., Codreanu, M., & Juntti, M. (2018). Distributed distortion-rate optimized compressed sensing in wireless sensor networks. IEEE Transactions on Communications, 66(4), 1609–1623.CrossRef Leinonen, M., Codreanu, M., & Juntti, M. (2018). Distributed distortion-rate optimized compressed sensing in wireless sensor networks. IEEE Transactions on Communications, 66(4), 1609–1623.CrossRef
22.
Zurück zum Zitat Zhang, D. G., Zhang, T., Zhang, J., Dong, Y., & Zhang, X. D. (2018). A kind of effective data aggregating method based on compressive sensing for wireless sensor network. EURASIP Journal on Wireless Communications and Networking, 2018(1), 159.CrossRef Zhang, D. G., Zhang, T., Zhang, J., Dong, Y., & Zhang, X. D. (2018). A kind of effective data aggregating method based on compressive sensing for wireless sensor network. EURASIP Journal on Wireless Communications and Networking, 2018(1), 159.CrossRef
23.
Zurück zum Zitat Sejdić, E., Orović, I., & Stanković, S. (2018). Compressive sensing meets time–frequency: An overview of recent advances in time–frequency processing of sparse signals. Digital Signal Processing, 77, 22–35.MathSciNetCrossRef Sejdić, E., Orović, I., & Stanković, S. (2018). Compressive sensing meets time–frequency: An overview of recent advances in time–frequency processing of sparse signals. Digital Signal Processing, 77, 22–35.MathSciNetCrossRef
24.
Zurück zum Zitat Xiao, X., Song, X., & Lei, Q. (2018). Efficient measurement method for spatiotemporal compressive data gathering in wireless sensor networks. KSII Transactions on Internet and Information Systems, 12, 1618–1637. Xiao, X., Song, X., & Lei, Q. (2018). Efficient measurement method for spatiotemporal compressive data gathering in wireless sensor networks. KSII Transactions on Internet and Information Systems, 12, 1618–1637.
25.
Zurück zum Zitat Zaeemzadeh, A., Joneidi, M., & Rahnavard, N. (2017). Adaptive non-uniform compressive sampling for time-varying signals. In 2017 51st Annual conference on information sciences and systems (CISS) (pp. 1–6). IEEE. Zaeemzadeh, A., Joneidi, M., & Rahnavard, N. (2017). Adaptive non-uniform compressive sampling for time-varying signals. In 2017 51st Annual conference on information sciences and systems (CISS) (pp. 1–6). IEEE.
26.
Zurück zum Zitat Huang, J., & Soong, B. H. (2019). Cost-aware stochastic compressive data gathering for wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(2), 1525–1533.CrossRef Huang, J., & Soong, B. H. (2019). Cost-aware stochastic compressive data gathering for wireless sensor networks. IEEE Transactions on Vehicular Technology, 68(2), 1525–1533.CrossRef
27.
Zurück zum Zitat Han, Z., Zhang, X., Zhang, D. L., Zhang, G., & Ding, S. Y. A data gathering algorithm based on compressive sensing in lossy wireless sensor networks. In Proceedings of the 2nd international conference on frontiers of sensors technologies, Shenzhen, China, 14–16 April 2017 (pp. 146–153). Han, Z., Zhang, X., Zhang, D. L., Zhang, G., & Ding, S. Y. A data gathering algorithm based on compressive sensing in lossy wireless sensor networks. In Proceedings of the 2nd international conference on frontiers of sensors technologies, Shenzhen, China, 14–16 April 2017 (pp. 146–153).
28.
Zurück zum Zitat Azarnia, G., Tinati, M. A., & Rezaii, T. Y. (2018). Cooperative and distributed algorithm for compressed sensing recovery in WSNs. IET Signal Processing, 12, 346–357.CrossRef Azarnia, G., Tinati, M. A., & Rezaii, T. Y. (2018). Cooperative and distributed algorithm for compressed sensing recovery in WSNs. IET Signal Processing, 12, 346–357.CrossRef
32.
Zurück zum Zitat Dutt, S., Agrawal, S., & Vig, R. (2018). Cluster-head restricted energy efficient protocol (CREEP) for routing in heterogeneous wireless sensor networks. Wireless Personal Communications, 100, 1477–1497.CrossRef Dutt, S., Agrawal, S., & Vig, R. (2018). Cluster-head restricted energy efficient protocol (CREEP) for routing in heterogeneous wireless sensor networks. Wireless Personal Communications, 100, 1477–1497.CrossRef
33.
Zurück zum Zitat Jari, A., & Avokh, A. (2021). Pso-based sink placement and load-balanced anycast routing in multi-sink wsns considering compressive sensing theory. Engineering Applications of Artificial Intelligence, 100, 104164.CrossRef Jari, A., & Avokh, A. (2021). Pso-based sink placement and load-balanced anycast routing in multi-sink wsns considering compressive sensing theory. Engineering Applications of Artificial Intelligence, 100, 104164.CrossRef
36.
Zurück zum Zitat Yang, Y., Liu, H., & Hou, J. (2022). A compressed sensing measurement matrix construction method based on TDMA for wireless sensor networks. Entropy, 24(4), 493.MathSciNetCrossRef Yang, Y., Liu, H., & Hou, J. (2022). A compressed sensing measurement matrix construction method based on TDMA for wireless sensor networks. Entropy, 24(4), 493.MathSciNetCrossRef
37.
Zurück zum Zitat Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1–13.CrossRef Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1–13.CrossRef
38.
Zurück zum Zitat Movassagh, A. A., Alzubi, J. A., Gheisari, M., Rahimi, M., Mohan, S., Abbasi, A. A., & Nabipour, N. (2021). Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. Journal of Ambient Intelligence and Humanized Computing. Movassagh, A. A., Alzubi, J. A., Gheisari, M., Rahimi, M., Mohan, S., Abbasi, A. A., & Nabipour, N. (2021). Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. Journal of Ambient Intelligence and Humanized Computing.
39.
Zurück zum Zitat Alzubi, J. A. (2020). Bipolar fully recurrent deep structured neural learning based attack detection for securing industrial sensor networks. Transactions on Emerging Telecommunications Technologies, 32(7), e4069. Alzubi, J. A. (2020). Bipolar fully recurrent deep structured neural learning based attack detection for securing industrial sensor networks. Transactions on Emerging Telecommunications Technologies, 32(7), e4069.
40.
Zurück zum Zitat Gheisari, M., Alzubi, J., Zhang, X., Kose, U., & Saucedo, J. A. M. (2020). A new algorithm for optimization of quality of service in peer to peer wireless mesh networks. Wireless Networks, 26, 4965–4973.CrossRef Gheisari, M., Alzubi, J., Zhang, X., Kose, U., & Saucedo, J. A. M. (2020). A new algorithm for optimization of quality of service in peer to peer wireless mesh networks. Wireless Networks, 26, 4965–4973.CrossRef
Metadaten
Titel
Design of an adaptive framework with compressive sensing for spatial data in wireless sensor networks
verfasst von
C. Sureshkumar
S. Sabena
Publikationsdatum
14.03.2023
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2023
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-023-03291-y

Weitere Artikel der Ausgabe 5/2023

Wireless Networks 5/2023 Zur Ausgabe

Neuer Inhalt