Skip to main content
Top
Published in: Journal of Computational Electronics 3/2020

18-05-2020

Design of bioinspired tripartite synapse analog integrated circuit in 65-nm CMOS Technology

Authors: Shohreh Tir, Majid Shalchian, Mohsen Moezzi

Published in: Journal of Computational Electronics | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents the design of a bioinspired synaptic integrated circuit, which takes into account the interactions of astrocyte in a tripartite synapse. These interactions result in activation of Ca2+ ion waves through fast and slow activation pathways which affect the synapse and postsynaptic neuron. The circuit has been implemented in TSMC 65-nm CMOS technology with 1.2 V supply voltage. Dynamic and nonlinear characteristics of the interactions have been implemented based on nonlinear characteristics of field effect transistors and few external capacitors. This design used few components from previous works, including ML neuron and Ca2+ circuit. All components are scaled to 65 nm and implemented in weak inversion operating region. Simulation results confirm that the proposed circuit demonstrates the functionality of physical model with acceptable relative mean square error and low power consumption of about 37 nW. The effects of supply voltage sensitivity, variability of threshold voltage and noise on the Ca2+ circuit have been studied. Circuit layout for main components including presynaptic neuron, postsynaptic neuron and the synapse has been prepared, with the area of 80 µm2. Post-layout simulation of the neuron with parasitics demonstrates the feasibility of the proposed model for fabrication. This circuit structure can be used for the study and demonstration of various functionalities associated with astrocyte including self-repair.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fields, R.D., Stevens-Graham, B.: New insights into neuron-glia communication. Science 298(5593), 556–562 (2002)CrossRef Fields, R.D., Stevens-Graham, B.: New insights into neuron-glia communication. Science 298(5593), 556–562 (2002)CrossRef
2.
go back to reference Laming, P.R., Kimelberg, H., Robinson, S., Salm, A., Hawrylak, N., Müller, C., Roots, B., Ng, K.: Neuronal–glial interactions and behaviour. Neurosci. Biobehav. Rev. 24(3), 295–340 (2000)CrossRef Laming, P.R., Kimelberg, H., Robinson, S., Salm, A., Hawrylak, N., Müller, C., Roots, B., Ng, K.: Neuronal–glial interactions and behaviour. Neurosci. Biobehav. Rev. 24(3), 295–340 (2000)CrossRef
3.
go back to reference Fiacco, T.A., McCarthy, K.D.: Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J. Neurosci. 24(3), 722–732 (2004)CrossRef Fiacco, T.A., McCarthy, K.D.: Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J. Neurosci. 24(3), 722–732 (2004)CrossRef
4.
go back to reference Hamilton, N.B., Attwell, D.: Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11(4), 227 (2010)CrossRef Hamilton, N.B., Attwell, D.: Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11(4), 227 (2010)CrossRef
5.
go back to reference Dallérac, G., Chever, O., Rouach, N.: How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159 (2013)CrossRef Dallérac, G., Chever, O., Rouach, N.: How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159 (2013)CrossRef
6.
go back to reference Halassa, M.M., Fellin, T., Haydon, P.G.: Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57(4), 343–346 (2009)CrossRef Halassa, M.M., Fellin, T., Haydon, P.G.: Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57(4), 343–346 (2009)CrossRef
7.
go back to reference Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N., Ikegaya, Y.: Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31(7), 2607–2614 (2011)CrossRef Kuga, N., Sasaki, T., Takahara, Y., Matsuki, N., Ikegaya, Y.: Large-scale calcium waves traveling through astrocytic networks in vivo. J. Neurosci. 31(7), 2607–2614 (2011)CrossRef
8.
go back to reference Papa, M., De Luca, C., Petta, F., Alberghina, L., Cirillo, G.: Astrocyte–neuron interplay in maladaptive plasticity. Neurosci. Biobehav. Rev. 42, 35–54 (2014)CrossRef Papa, M., De Luca, C., Petta, F., Alberghina, L., Cirillo, G.: Astrocyte–neuron interplay in maladaptive plasticity. Neurosci. Biobehav. Rev. 42, 35–54 (2014)CrossRef
9.
go back to reference Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91(26), 268101 (2003)CrossRef Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91(26), 268101 (2003)CrossRef
10.
go back to reference Nadkarni, S., Jung, P.: Dressed neurons: modeling neural–glial interactions. Phys. Biol. 1(1), 35 (2004)CrossRef Nadkarni, S., Jung, P.: Dressed neurons: modeling neural–glial interactions. Phys. Biol. 1(1), 35 (2004)CrossRef
11.
go back to reference Nadkarni, S., Jung, P.: Modeling synaptic transmission of the tripartite synapse. Phys. Biol. 4(1), 1 (2007)CrossRef Nadkarni, S., Jung, P.: Modeling synaptic transmission of the tripartite synapse. Phys. Biol. 4(1), 1 (2007)CrossRef
12.
go back to reference Nadkarni, S., Jung, P., Levine, H.: Astrocytes optimize the synaptic transmission of information. PLoS Comput. Biol. 4(5), e1000088 (2008)MathSciNetCrossRef Nadkarni, S., Jung, P., Levine, H.: Astrocytes optimize the synaptic transmission of information. PLoS Comput. Biol. 4(5), e1000088 (2008)MathSciNetCrossRef
13.
go back to reference Postnov, D.E., Ryazanova, L.S., Sosnovtseva, O.V.: Functional modeling of neural–glial interaction. BioSystems 89(1–3), 84–91 (2007)CrossRef Postnov, D.E., Ryazanova, L.S., Sosnovtseva, O.V.: Functional modeling of neural–glial interaction. BioSystems 89(1–3), 84–91 (2007)CrossRef
14.
go back to reference Postnov, D.E., Ryazanova, L.S., Brazhe, N.A., Brazhe, A.R., Maximov, G.V., Mosekilde, E., Sosnovtseva, O.V.: Giant glial cell: new insight through mechanism-based modeling. J. Biol. Phys. 34(3–4), 441–457 (2008)CrossRef Postnov, D.E., Ryazanova, L.S., Brazhe, N.A., Brazhe, A.R., Maximov, G.V., Mosekilde, E., Sosnovtseva, O.V.: Giant glial cell: new insight through mechanism-based modeling. J. Biol. Phys. 34(3–4), 441–457 (2008)CrossRef
15.
go back to reference Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., Brazhe, A.R., Sosnovtseva, O.V.: Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J. Biol. Phys. 35(4), 425–445 (2009)CrossRef Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., Brazhe, A.R., Sosnovtseva, O.V.: Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J. Biol. Phys. 35(4), 425–445 (2009)CrossRef
16.
go back to reference Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G.: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22(5), 208–215 (1999)CrossRef Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G.: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22(5), 208–215 (1999)CrossRef
17.
go back to reference Indiveri, G., Stefanini, F., Chicca, E.: Spike-based learning with a generalized integrate and fire silicon neuron. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 1951–1954 (2010) Indiveri, G., Stefanini, F., Chicca, E.: Spike-based learning with a generalized integrate and fire silicon neuron. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 1951–1954 (2010)
18.
go back to reference Indiveri, G., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011) Indiveri, G., et al.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011)
19.
go back to reference Qiao, N., Indiveri, G., et al.: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128 K synapses. Front. Neurosci. 9, 141 (2015)CrossRef Qiao, N., Indiveri, G., et al.: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128 K synapses. Front. Neurosci. 9, 141 (2015)CrossRef
20.
go back to reference Soleimani, H., Bavandpour, M., Ahmadi, A., Abbott, D.: Digital implementation of a biological astrocyte model and its application. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 127–139 (2014)MathSciNetCrossRef Soleimani, H., Bavandpour, M., Ahmadi, A., Abbott, D.: Digital implementation of a biological astrocyte model and its application. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 127–139 (2014)MathSciNetCrossRef
21.
go back to reference Haghiri, S., Ahmadi, A., Saif, M.: Complete neuron-astrocyte interaction model: digital multiplier less design and networking mechanism. IEEE Trans. Biomed. Circuits Syst. 11(1), 117–127 (2016)CrossRef Haghiri, S., Ahmadi, A., Saif, M.: Complete neuron-astrocyte interaction model: digital multiplier less design and networking mechanism. IEEE Trans. Biomed. Circuits Syst. 11(1), 117–127 (2016)CrossRef
22.
go back to reference Lee, R.K.: Astrocyte-Mediated Plasticity and Repair in CMOS Neuromorphic Circuits, PhD Thesis, University of Southern California (2018) Lee, R.K.: Astrocyte-Mediated Plasticity and Repair in CMOS Neuromorphic Circuits, PhD Thesis, University of Southern California (2018)
23.
go back to reference Azad, F., Shalchian, M., Amiri, M.: Circuit modelling of 2-AG indirect pathway via astrocyte as a catalyst for synaptic self repair. Analog Integr. Circuits Sig. Process 95(1), 127–139 (2018)CrossRef Azad, F., Shalchian, M., Amiri, M.: Circuit modelling of 2-AG indirect pathway via astrocyte as a catalyst for synaptic self repair. Analog Integr. Circuits Sig. Process 95(1), 127–139 (2018)CrossRef
24.
go back to reference Ranjbar, M., Amiri, M.: An analog astrocyte–neuron interaction circuit for neuromorphic applications. J. Comput. Electron. 14(3), 694–706 (2015)CrossRef Ranjbar, M., Amiri, M.: An analog astrocyte–neuron interaction circuit for neuromorphic applications. J. Comput. Electron. 14(3), 694–706 (2015)CrossRef
25.
go back to reference Ranjbar, M., Amiri, M.: Analog implementation of neuron–astrocyte interaction in tripartite synapse. J. Comput. Electron. 15(1), 311–323 (2016)CrossRef Ranjbar, M., Amiri, M.: Analog implementation of neuron–astrocyte interaction in tripartite synapse. J. Comput. Electron. 15(1), 311–323 (2016)CrossRef
26.
go back to reference Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)CrossRef Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)CrossRef
28.
go back to reference Szczęsny, S., Huderek, D.: 60 pW 20 μm size CMOS implementation of an actual soma membrane. J. Comput. Electron. 2019, 1–11 (2019) Szczęsny, S., Huderek, D.: 60 pW 20 μm size CMOS implementation of an actual soma membrane. J. Comput. Electron. 2019, 1–11 (2019)
29.
go back to reference Kopell, N., Ermentrout, G.B., Whittington, M.A., Traub, R.D.: Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. 97(4), 1867–1872 (2000)CrossRef Kopell, N., Ermentrout, G.B., Whittington, M.A., Traub, R.D.: Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. 97(4), 1867–1872 (2000)CrossRef
30.
go back to reference Khodabandehloo, G., Mirhassani, M., Ahmadi, M.: Analog implementation of a novel resistive-type sigmoidal neuron. IEEE Trans. Very Large Scale Integr. Syst. 20(4), 750–754 (2011)CrossRef Khodabandehloo, G., Mirhassani, M., Ahmadi, M.: Analog implementation of a novel resistive-type sigmoidal neuron. IEEE Trans. Very Large Scale Integr. Syst. 20(4), 750–754 (2011)CrossRef
31.
go back to reference Ghomi, A., Dolatshahi, M.: Design of a new CMOS Low-Power Analogue Neuron. IETE J. Res. 64(1), 67–75 (2018)CrossRef Ghomi, A., Dolatshahi, M.: Design of a new CMOS Low-Power Analogue Neuron. IETE J. Res. 64(1), 67–75 (2018)CrossRef
32.
go back to reference Karimi, G., Ranjbar, M., Amirian, M., Shahim-Aeen, A.: A neuromorphic real-time VLSI design of Ca2+ dynamic in an astrocyte. Neurocomputing 272, 197–203 (2018)CrossRef Karimi, G., Ranjbar, M., Amirian, M., Shahim-Aeen, A.: A neuromorphic real-time VLSI design of Ca2+ dynamic in an astrocyte. Neurocomputing 272, 197–203 (2018)CrossRef
33.
go back to reference Mroszczyk, P., Goodacre, J., Pavlidis, V.F.: Energy efficient flash ADC with PVT variability compensation through advanced body biasing. IEEE Trans. Circuits Syst. II Express Briefs 66(11), 1775–1779 (2019)CrossRef Mroszczyk, P., Goodacre, J., Pavlidis, V.F.: Energy efficient flash ADC with PVT variability compensation through advanced body biasing. IEEE Trans. Circuits Syst. II Express Briefs 66(11), 1775–1779 (2019)CrossRef
34.
go back to reference Azadmousavi, T., Aghdam, E.N.: Adaptive body biasing circuit for reliability and variability compensation of a low power RF amplifier. IEEE Trans. Device Mater. Reliab. 19(1), 226–232 (2019)CrossRef Azadmousavi, T., Aghdam, E.N.: Adaptive body biasing circuit for reliability and variability compensation of a low power RF amplifier. IEEE Trans. Device Mater. Reliab. 19(1), 226–232 (2019)CrossRef
Metadata
Title
Design of bioinspired tripartite synapse analog integrated circuit in 65-nm CMOS Technology
Authors
Shohreh Tir
Majid Shalchian
Mohsen Moezzi
Publication date
18-05-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01514-5

Other articles of this Issue 3/2020

Journal of Computational Electronics 3/2020 Go to the issue