Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2020

12-05-2020

Design of Novel Non-equiatomic Cu-Ni-Al-Ti Composite Medium-Entropy Alloys

Authors: Gökhan Polat, Ziya Anıl Erdal, Yunus Eren Kalay

Published in: Journal of Materials Engineering and Performance | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There has been great attention on high-entropy alloys (HEAs) over the past decade. Unlike conventional alloy systems, HEAs commonly include at least five principal elements with equiatomic or near-equiatomic ratio. HEAs with their superior mechanical, magnetic, and thermal properties are promising materials for critical engineering applications. Medium-entropy alloys (MEAs), which consist of less than five principal elements, have very similar structural features with HEAs such as robust thermodynamic stability and exceptional mechanical performance. The insights of MEAs have not been fully revealed yet. In the present study, novel MEAs (Cu20Ni20Al30Ti30, Cu25Ni25Al25Ti25, Cu34Ni22Al22Ti22, and Cu35Ni25Al20Ti20) have been designed using thermo-physical calculations and Thermo-Calc software. These MEAs were then produced using copper heart arc melting and suction cast into cylindrical rods with 3 mm diameters. X-ray diffraction (XRD), optical microscope (OM), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive spectroscopy (EDS) were used for structural characterization. The corresponding results reveal that the Cu20Ni20Al30Ti30, MEA, consists of a body-centered cubic (BCC-B2) phase with intermetallic compounds (ICs), whereas Cu25Ni25Al25Ti25 has single BCC-B2 phase. When the amounts Cu and Ni are increased, system drives itself toward a face-centered cubic (FCC) structure. A dual BCC and FCC composite Cu35Ni25Al20Ti20 has been detected as the most promising MEA among the others with 820 and 1338 MPa measured yield and compressive strength, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRef
2.
go back to reference J.W. Yeh, Recent Progress in High-Entropy Alloys, Annales de Chimie: Science des Materiaux, 2006, 31(6), p 633–648 J.W. Yeh, Recent Progress in High-Entropy Alloys, Annales de Chimie: Science des Materiaux, 2006, 31(6), p 633–648
3.
go back to reference Y. Zhang and Y.J. Zhou, Solid Solution Formation Criteria for High Entropy Alloys, Mater. Sci. Forum, 2007, 561–565, p 1337–1339 Y. Zhang and Y.J. Zhou, Solid Solution Formation Criteria for High Entropy Alloys, Mater. Sci. Forum, 2007, 561–565, p 1337–1339
4.
go back to reference Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538 Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538
5.
go back to reference X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2–3), p 233–238 X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2–3), p 233–238
6.
go back to reference J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 2013, 65(12), p 1759–1771 J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 2013, 65(12), p 1759–1771
7.
go back to reference C.-J. Tong, Y.-L. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, C.-H. Tsau, S.-J. Lın, and S.-Y. Chang, Microstructure Characterization of Al, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, 36(4), p 881–893 C.-J. Tong, Y.-L. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, C.-H. Tsau, S.-J. Lın, and S.-Y. Chang, Microstructure Characterization of Al, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, 36(4), p 881–893
8.
go back to reference J. Li, W. Jia, J. Wang, H. Kou, D. Zhang, and E. Beaugnon, Enhanced Mechanical Properties of a CoCrFeNi High Entropy Alloy by Supercooling Method, Mater. Des., 2016, 95, p 183–187 J. Li, W. Jia, J. Wang, H. Kou, D. Zhang, and E. Beaugnon, Enhanced Mechanical Properties of a CoCrFeNi High Entropy Alloy by Supercooling Method, Mater. Des., 2016, 95, p 183–187
9.
go back to reference B.S. Murty, High-Entropy Alloys, Butterworth-Heinemann, Oxford, 2014 B.S. Murty, High-Entropy Alloys, Butterworth-Heinemann, Oxford, 2014
10.
go back to reference H. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, and H. Zhou, MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18(5), p 1–15 H. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, and H. Zhou, MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18(5), p 1–15
11.
go back to reference S. Gorsse, J.P. Couzinié, and D.B. Miracle, From High-Entropy Alloys to Complex Concentrated Alloys, Comptes Rendus Physique, 2018, 19(8), p 721–736 S. Gorsse, J.P. Couzinié, and D.B. Miracle, From High-Entropy Alloys to Complex Concentrated Alloys, Comptes Rendus Physique, 2018, 19(8), p 721–736
12.
go back to reference Y. Yu, J. Wang, J. Li, H. Kou, and W. Liu, Characterization of BCC Phases in AlCoCrFeNiTix High Entropy Alloys, Mater, Lett., 2015, 138, p 78–80 Y. Yu, J. Wang, J. Li, H. Kou, and W. Liu, Characterization of BCC Phases in AlCoCrFeNiTix High Entropy Alloys, Mater, Lett., 2015, 138, p 78–80
13.
go back to reference S. Guo, Q. Hu, C. Ng, and C.T. Liu, More than Entropy in High-Entropy Alloys: Forming Solid Solutions or Amorphous Phase, Intermetallics, 2013, 41, p 96–103 S. Guo, Q. Hu, C. Ng, and C.T. Liu, More than Entropy in High-Entropy Alloys: Forming Solid Solutions or Amorphous Phase, Intermetallics, 2013, 41, p 96–103
14.
go back to reference T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructure and Mechanical Properties of Multiprincipal Component CoCrFeNiMox Alloys, Mater. Charact., 2012, 70, p 63–67 T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructure and Mechanical Properties of Multiprincipal Component CoCrFeNiMox Alloys, Mater. Charact., 2012, 70, p 63–67
15.
go back to reference M.S. Lucas, L. Mauger, J.A. Muoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut, Magnetic and Vibrational Properties of High-Entropy Alloys, J. Appl. Phys., 2011, 109(7), p 107–110 M.S. Lucas, L. Mauger, J.A. Muoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut, Magnetic and Vibrational Properties of High-Entropy Alloys, J. Appl. Phys., 2011, 109(7), p 107–110
16.
go back to reference L. Zhang, Y. Zhou, X. Jin, X. Du, and B. Li, The Microstructure and High-Temperature Properties of Novel Nano Precipitation-Hardened Face Centered Cubic High-Entropy Superalloys, Scripta Mater., 2018, 146, p 226–230 L. Zhang, Y. Zhou, X. Jin, X. Du, and B. Li, The Microstructure and High-Temperature Properties of Novel Nano Precipitation-Hardened Face Centered Cubic High-Entropy Superalloys, Scripta Mater., 2018, 146, p 226–230
17.
go back to reference S. Gangireddy, B. Gwalani, V. Soni, R. Banerjee, and R.S. Mishra, Contrasting Mechanical Behavior in Precipitation Hardenable Al X CoCrFeNi High Entropy Alloy Microstructures: Single Phase FCC Versus Dual Phase FCC-BCC, Mater. Sci. Eng. A, 2019, 739, p 158–166 S. Gangireddy, B. Gwalani, V. Soni, R. Banerjee, and R.S. Mishra, Contrasting Mechanical Behavior in Precipitation Hardenable Al X CoCrFeNi High Entropy Alloy Microstructures: Single Phase FCC Versus Dual Phase FCC-BCC, Mater. Sci. Eng. A, 2019, 739, p 158–166
18.
go back to reference Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534(7606), p 227–230 Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534(7606), p 227–230
19.
go back to reference S. Guo, C. Ng, and C.T. Liu, Anomalous Solidification Microstructures in Co-Free Al XCrCuFeNi2 High-Entropy Alloys, J. Alloys Compd., 2013, 557, p 77–81 S. Guo, C. Ng, and C.T. Liu, Anomalous Solidification Microstructures in Co-Free Al XCrCuFeNi2 High-Entropy Alloys, J. Alloys Compd., 2013, 557, p 77–81
20.
go back to reference J.M. Park, J. Moon, J.W. Bae, D.H. Kim, Y.H. Jo, S. Lee, and H.S. Kim, Role of BCC Phase on Tensile Behavior of Dual-Phase Al 0.5 CoCrFeMnNi High-Entropy Alloy at Cryogenic Temperature, Mater. Sci. Eng. A, 2019, 746, p 443–447 J.M. Park, J. Moon, J.W. Bae, D.H. Kim, Y.H. Jo, S. Lee, and H.S. Kim, Role of BCC Phase on Tensile Behavior of Dual-Phase Al 0.5 CoCrFeMnNi High-Entropy Alloy at Cryogenic Temperature, Mater. Sci. Eng. A, 2019, 746, p 443–447
21.
go back to reference K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, and Y.S. Na, Dual-Phase High-Entropy Alloys for High-Temperature Structural Applications, J. Alloys Compd., 2017, 728, p 1235–1238 K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, and Y.S. Na, Dual-Phase High-Entropy Alloys for High-Temperature Structural Applications, J. Alloys Compd., 2017, 728, p 1235–1238
22.
go back to reference R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y.L. Chiu, H. Ding, J. Guo, and H. Fu, Composition Design of High Entropy Alloys Using the Valence Electron Concentration to Balance Strength and Ductility, Acta Mater., 2018, 144, p 129–137 R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y.L. Chiu, H. Ding, J. Guo, and H. Fu, Composition Design of High Entropy Alloys Using the Valence Electron Concentration to Balance Strength and Ductility, Acta Mater., 2018, 144, p 129–137
23.
go back to reference Y.F. Ye, C.T. Liu, and Y. Yang, A Geometric Model for Intrinsic Residual Strain and Phase Stability in High Entropy Alloys, Acta Mater., 2015, 94, p 152–161 Y.F. Ye, C.T. Liu, and Y. Yang, A Geometric Model for Intrinsic Residual Strain and Phase Stability in High Entropy Alloys, Acta Mater., 2015, 94, p 152–161
24.
go back to reference A.K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam, A Geometrical Parameter for the Formation of Disordered Solid Solutions in Multi-component Alloys, Intermetallics, 2014, 53, p 112–119 A.K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam, A Geometrical Parameter for the Formation of Disordered Solid Solutions in Multi-component Alloys, Intermetallics, 2014, 53, p 112–119
25.
go back to reference Z. Wang, Y. Huang, Y. Yang, J. Wang, and C.T. Liu, Atomic-Size Effect and Solid Solubility of Multicomponent Alloys, Scripta Mater., 2015, 94, p 28–31 Z. Wang, Y. Huang, Y. Yang, J. Wang, and C.T. Liu, Atomic-Size Effect and Solid Solubility of Multicomponent Alloys, Scripta Mater., 2015, 94, p 28–31
26.
go back to reference V.K. Soni, S. Sanyal, and S.K. Sinha, Phase Evolution and Mechanical Properties of Novel FeCoNiCuMox High Entropy Alloys, Vacuum, 2019, 2020(174), p 109173 V.K. Soni, S. Sanyal, and S.K. Sinha, Phase Evolution and Mechanical Properties of Novel FeCoNiCuMox High Entropy Alloys, Vacuum, 2019, 2020(174), p 109173
27.
go back to reference Y. Lu, Y. Dong, L. Jiang, T. Wang, T. Li, and Y. Zhang, A Criterion for Topological Close-Packed Phase Formation in High Entropy Alloys, Entropy, 2015, 17(4), p 2355–2366 Y. Lu, Y. Dong, L. Jiang, T. Wang, T. Li, and Y. Zhang, A Criterion for Topological Close-Packed Phase Formation in High Entropy Alloys, Entropy, 2015, 17(4), p 2355–2366
28.
go back to reference Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Effects of Electro-Negativity on the Stability of Topologically Close-Packed Phase in High Entropy Alloys, Intermetallics, 2014, 52, p 105–109 Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Effects of Electro-Negativity on the Stability of Topologically Close-Packed Phase in High Entropy Alloys, Intermetallics, 2014, 52, p 105–109
29.
go back to reference Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, and B. Li, Design of Non-Equiatomic Medium-Entropy Alloys, Sci. Rep., 2018, 8(1), p 1236 Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, and B. Li, Design of Non-Equiatomic Medium-Entropy Alloys, Sci. Rep., 2018, 8(1), p 1236
30.
go back to reference A. Gali and E.P. George, Tensile Properties of High- and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74–78 A. Gali and E.P. George, Tensile Properties of High- and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74–78
31.
go back to reference G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy CrCoNi Compared to High-Entropy CrMnFeCoNi, Acta Materialia, 2017, 128, p 292–303 G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy CrCoNi Compared to High-Entropy CrMnFeCoNi, Acta Materialia, 2017, 128, p 292–303
32.
go back to reference A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys, Entropy, 2013, 15(9), p 3810–3821 A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys, Entropy, 2013, 15(9), p 3810–3821
33.
go back to reference D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Materialia, 2017, 122, p 448–511 D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Materialia, 2017, 122, p 448–511
34.
go back to reference S. Gorsse, M.H. Nguyen, O.N. Senkov, and D.B. Miracle, Database on the Mechanical Properties of High Entropy Alloys and Complex Concentrated Alloys, Data Brief, 2018, 21, p 2664–2678 S. Gorsse, M.H. Nguyen, O.N. Senkov, and D.B. Miracle, Database on the Mechanical Properties of High Entropy Alloys and Complex Concentrated Alloys, Data Brief, 2018, 21, p 2664–2678
35.
go back to reference S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong, Relationship between the Widths of Supercooled Liquid Regions and Bond Parameters of Mg-Based Bulk Metallic Glasses, J. Non-Cryst. Solids, 2003, 321(1–2), p 120–125 S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong, Relationship between the Widths of Supercooled Liquid Regions and Bond Parameters of Mg-Based Bulk Metallic Glasses, J. Non-Cryst. Solids, 2003, 321(1–2), p 120–125
36.
go back to reference A. Kumar, A.K. Swarnakar, A. Basu, and M. Chopkar, Effects of Processing Route on Phase Evolution and Mechanical Properties of CoCrCuFeNiSix High Entropy Alloys, J. Alloys Compd., 2018, 748, p 889–897 A. Kumar, A.K. Swarnakar, A. Basu, and M. Chopkar, Effects of Processing Route on Phase Evolution and Mechanical Properties of CoCrCuFeNiSix High Entropy Alloys, J. Alloys Compd., 2018, 748, p 889–897
37.
go back to reference S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of Fcc or Bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), p 103505 S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of Fcc or Bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), p 103505
38.
go back to reference M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, and J.A. Hawk, Thermodynamics of Concentrated Solid Solution Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21(5), p 238–251 M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, and J.A. Hawk, Thermodynamics of Concentrated Solid Solution Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21(5), p 238–251
39.
go back to reference M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys, Mater. Res. Lett., 2013, 1(4), p 207–212 M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys, Mater. Res. Lett., 2013, 1(4), p 207–212
40.
go back to reference L. Jiang, Y.P. Lu, H. Jiang, T.M. Wang, B.N. Wei, Z.Q. Cao, and T.J. Li, Formation Rules of Single Phase Solid Solution in High Entropy Alloys, Mater. Sci. Technol. (United Kingdom), 2016, 32(6), p 588–592 L. Jiang, Y.P. Lu, H. Jiang, T.M. Wang, B.N. Wei, Z.Q. Cao, and T.J. Li, Formation Rules of Single Phase Solid Solution in High Entropy Alloys, Mater. Sci. Technol. (United Kingdom), 2016, 32(6), p 588–592
41.
go back to reference R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, and P.K. Liaw, Design of Light-Weight High-Entropy Alloys, Entropy, 2016, 18(9), p 16–29 R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, and P.K. Liaw, Design of Light-Weight High-Entropy Alloys, Entropy, 2016, 18(9), p 16–29
42.
go back to reference X.D. Xu, S. Guo, T.G. Nieh, C.T. Liu, A. Hirata, and M.W. Chen, Effects of Mixing Enthalpy and Cooling Rate on Phase Formation of AlxCoCrCuFeNi High-Entropy Alloys, Materialia, 2019, 6, p 100292 X.D. Xu, S. Guo, T.G. Nieh, C.T. Liu, A. Hirata, and M.W. Chen, Effects of Mixing Enthalpy and Cooling Rate on Phase Formation of AlxCoCrCuFeNi High-Entropy Alloys, Materialia, 2019, 6, p 100292
43.
go back to reference B.S. Murty, J.W. Yeh, S. Ranganathan, B.S. Murty, J.W. Yeh, and S. Ranganathan, Phase Selection in High-Entropy Alloys, High Entropy Alloys, 2014, 3, p 37–56 B.S. Murty, J.W. Yeh, S. Ranganathan, B.S. Murty, J.W. Yeh, and S. Ranganathan, Phase Selection in High-Entropy Alloys, High Entropy Alloys, 2014, 3, p 37–56
44.
go back to reference G. Bizhanova, F. Li, Y. Ma, P. Gong, and X. Wang, Development and Crystallization Kinetics of Novel Near-Equiatomic High-Entropy Bulk Metallic Glasses, J. Alloys Compd., 2019, 779, p 474–486 G. Bizhanova, F. Li, Y. Ma, P. Gong, and X. Wang, Development and Crystallization Kinetics of Novel Near-Equiatomic High-Entropy Bulk Metallic Glasses, J. Alloys Compd., 2019, 779, p 474–486
45.
go back to reference S. Tripathy, G. Gupta, and S.G. Chowdhury, High Entropy Alloys: Criteria for Stable Structure, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(1), p 7–17 S. Tripathy, G. Gupta, and S.G. Chowdhury, High Entropy Alloys: Criteria for Stable Structure, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(1), p 7–17
46.
go back to reference A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46(12), p 2817–2829 A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46(12), p 2817–2829
47.
go back to reference H. Kotan and K.A. Darling, A Study of Microstructural Evolution of Fe-18Cr-8Ni, Fe-17Cr-12Ni, and Fe-20Cr-25Ni Stainless Steels after Mechanical Alloying and Annealing, Mater. Charact., 2018, 138, p 186–194 H. Kotan and K.A. Darling, A Study of Microstructural Evolution of Fe-18Cr-8Ni, Fe-17Cr-12Ni, and Fe-20Cr-25Ni Stainless Steels after Mechanical Alloying and Annealing, Mater. Charact., 2018, 138, p 186–194
48.
go back to reference W. Li, P.K. Liaw, and Y. Gao, Fracture Resistance of High Entropy Alloys: A Review, Intermetallics, 2018, 99, p 69–83 W. Li, P.K. Liaw, and Y. Gao, Fracture Resistance of High Entropy Alloys: A Review, Intermetallics, 2018, 99, p 69–83
49.
go back to reference M. Seifi, D. Li, Z. Yong, P.K. Liaw, and J.J. Lewandowski, Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys, JOM, 2015, 67(10), p 2288–2295 M. Seifi, D. Li, Z. Yong, P.K. Liaw, and J.J. Lewandowski, Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys, JOM, 2015, 67(10), p 2288–2295
50.
go back to reference Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen, Y. Liu, Y. Ren, N. Li, and P.K. Liaw, Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized by Sputter Deposition, Mater. Res. Lett., 2015, 3(4), p 203–209 Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen, Y. Liu, Y. Ren, N. Li, and P.K. Liaw, Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized by Sputter Deposition, Mater. Res. Lett., 2015, 3(4), p 203–209
51.
go back to reference Z. Li, L. Fu, J. Peng, H. Zheng, X. Ji, Y. Sun, S. Ma, and A. Shan, Improving Mechanical Properties of an FCC High-Entropy Alloy by Γ′ and B2 Precipitates Strengthening, Mater. Charact., 2019, 2020(159), p 109989 Z. Li, L. Fu, J. Peng, H. Zheng, X. Ji, Y. Sun, S. Ma, and A. Shan, Improving Mechanical Properties of an FCC High-Entropy Alloy by Γ′ and B2 Precipitates Strengthening, Mater. Charact., 2019, 2020(159), p 109989
Metadata
Title
Design of Novel Non-equiatomic Cu-Ni-Al-Ti Composite Medium-Entropy Alloys
Authors
Gökhan Polat
Ziya Anıl Erdal
Yunus Eren Kalay
Publication date
12-05-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04830-w

Other articles of this Issue 5/2020

Journal of Materials Engineering and Performance 5/2020 Go to the issue

Premium Partners