Skip to main content
Top
Published in: Microsystem Technologies 6/2018

04-01-2018 | Technical Paper

Design optimisation of high sensitivity MEMS piezoresistive intracranial pressure sensor using Taguchi approach

Authors: Mazita Mohamad, Norhayati Soin, Fatimah Ibrahim

Published in: Microsystem Technologies | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

MEMS piezoresistive pressure sensors have been contemporarily used to measure intracranial pressure. Since an intracranial signal is of the pulsating type, the microsensor must be very sensitive to detect these changes. The sensitivity of the existing MEMS piezoresistive intracranial pressure sensors are in the range of 2 µV/V/mmHg to 0.17 mV/V/mmHg. Factors influencing the sensitivity and linearity of the sensor include the diaphragm thickness, the shape and placement of the piezoresistors, and the doping concentration. This paper will discuss the incorporation of these factors, which were tested to obtain higher sensitivity silicon-based piezoresistive intracranial pressure sensor, while maintaining the linearity of the sensor. In order to achieve this objective, the Taguchi robust design method of L27 orthogonal array was employed. The sensing outputs of these designs, with different combinations of factors were determined through simulations using COMSOL Multiphysics. The results indicated that the diaphragm thickness and perpendicular piezoresistors play important roles in the sensitivity performance of the MEMS piezoresistive intracranial pressure sensor. The findings also showed that the doping concentration of the piezoresistors have significant effect on the linearity performance of the sensor. Consequently, the design that consolidated the 3-turns (perpendicular) and 0-turn (parallel) meander shaped piezoresistors of 1017 cm−3 dopant concentration on a 2 μm diaphragm thickness was found to be the optimum design, with sensitivity of 0.1272 mV/V/mmHg and linearity of 99%. This design has been proven to be an improved version for the small diaphragm piezoresistive intracranial pressure sensor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bae B, Flachsbart BR, Park K, Shannon MA (2004) Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio. J Micromech Microeng 14:1597CrossRef Bae B, Flachsbart BR, Park K, Shannon MA (2004) Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio. J Micromech Microeng 14:1597CrossRef
go back to reference Bao M (2005) Analysis and design principles of MEMS devices. Elsevier, Amsterdam Bao M (2005) Analysis and design principles of MEMS devices. Elsevier, Amsterdam
go back to reference Chan WP et al (2014) A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. Solid State Circ IEEE J 49:2449–2461CrossRef Chan WP et al (2014) A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. Solid State Circ IEEE J 49:2449–2461CrossRef
go back to reference Citerio G, Andrews PJD (2009) Intracranial pressure part two: clinical applications and technology. In: Applied physiology in intensive care medicine. Springer, pp 109–112 Citerio G, Andrews PJD (2009) Intracranial pressure part two: clinical applications and technology. In: Applied physiology in intensive care medicine. Springer, pp 109–112
go back to reference Clausen I, Moe S, Vogl A (2012) Design and processing of a cost-effective piezoresistive MEMS cantilever sensor for medical and biomedical use. J Micromech Microeng 22:074008CrossRef Clausen I, Moe S, Vogl A (2012) Design and processing of a cost-effective piezoresistive MEMS cantilever sensor for medical and biomedical use. J Micromech Microeng 22:074008CrossRef
go back to reference Correia J, Bartek M, Wolffenbuttel R (1998) Load-deflection of a low-stress SiN-membrane/Si-frame composite diaphragm. In: Technical proceedings of the 1998 international conference on modeling and simulation of microsystems, pp 563–568 Correia J, Bartek M, Wolffenbuttel R (1998) Load-deflection of a low-stress SiN-membrane/Si-frame composite diaphragm. In: Technical proceedings of the 1998 international conference on modeling and simulation of microsystems, pp 563–568
go back to reference Doll JC, Pruitt BL (2013) Piezoresistor design and applications. Springer, BerlinCrossRef Doll JC, Pruitt BL (2013) Piezoresistor design and applications. Springer, BerlinCrossRef
go back to reference Ghani JA, Choudhury I, Hassan H (2004) Application of Taguchi method in the optimization of end milling parameters. J Mater Process Technol 145:84–92CrossRef Ghani JA, Choudhury I, Hassan H (2004) Application of Taguchi method in the optimization of end milling parameters. J Mater Process Technol 145:84–92CrossRef
go back to reference Ghannad-Rezaie M, Yang LJ-S, Garton HJ, Chronis N (2012) A near-infrared optomechanical intracranial pressure microsensor. Microelectromech Syst J 21:23–33CrossRef Ghannad-Rezaie M, Yang LJ-S, Garton HJ, Chronis N (2012) A near-infrared optomechanical intracranial pressure microsensor. Microelectromech Syst J 21:23–33CrossRef
go back to reference Ginggen A, Tardy Y, Crivelli R, Bork T, Renaud P (2008) A telemetric pressure sensor system for biomedical applications. Biomed Eng IEEE Trans 55:1374–1381CrossRef Ginggen A, Tardy Y, Crivelli R, Bork T, Renaud P (2008) A telemetric pressure sensor system for biomedical applications. Biomed Eng IEEE Trans 55:1374–1381CrossRef
go back to reference Hasenkamp W et al (2012) Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Biomed Microdev 14:819–828CrossRef Hasenkamp W et al (2012) Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Biomed Microdev 14:819–828CrossRef
go back to reference Hill G, Melamud R, Declercq F, Davenport A, Chan I, Hartwell P, Pruitt B (2007) SU-8 MEMS Fabry-Perot pressure sensor. Sens Actuators A Phys 138:52–62CrossRef Hill G, Melamud R, Declercq F, Davenport A, Chan I, Hartwell P, Pruitt B (2007) SU-8 MEMS Fabry-Perot pressure sensor. Sens Actuators A Phys 138:52–62CrossRef
go back to reference Kanda Y (1982) A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans Electron Dev 29:64–70CrossRef Kanda Y (1982) A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans Electron Dev 29:64–70CrossRef
go back to reference Kanda Y (1991) Piezoresistance effect of silicon. Sens Actuators A Phys 28:83–91CrossRef Kanda Y (1991) Piezoresistance effect of silicon. Sens Actuators A Phys 28:83–91CrossRef
go back to reference Kanda Y, Yasukawa A (1997) Optimum design considerations for silicon piezoresistive pressure sensors. Sens Actuators A Phys 62:539–542CrossRef Kanda Y, Yasukawa A (1997) Optimum design considerations for silicon piezoresistive pressure sensors. Sens Actuators A Phys 62:539–542CrossRef
go back to reference Kubba AE, Kubba AI (2016) A micro-capacitive pressure sensor design and modelling. J Sens Sens Syst 5:95CrossRef Kubba AE, Kubba AI (2016) A micro-capacitive pressure sensor design and modelling. J Sens Sens Syst 5:95CrossRef
go back to reference Kumar SS, Pant B (2014) Design principles and considerations for the ‘ideal’silicon piezoresistive pressure sensor: a focused review. Microsyst Technol 20:1213–1247CrossRef Kumar SS, Pant B (2014) Design principles and considerations for the ‘ideal’silicon piezoresistive pressure sensor: a focused review. Microsyst Technol 20:1213–1247CrossRef
go back to reference Kumar SS, Pant B (2015) Polysilicon thin film piezoresistive pressure microsensor: design, fabrication and characterization. Microsyst Technol 21:1949–1958CrossRef Kumar SS, Pant B (2015) Polysilicon thin film piezoresistive pressure microsensor: design, fabrication and characterization. Microsyst Technol 21:1949–1958CrossRef
go back to reference Li C, Wu P-M, Shutter LA, Narayan RK (2010) Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement. Appl Phys Lett 96:053502CrossRef Li C, Wu P-M, Shutter LA, Narayan RK (2010) Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement. Appl Phys Lett 96:053502CrossRef
go back to reference Liew L-A, Bright VM (2000) Disposable CMOS catheter-tip pressure sensor for intracranial pressure measurement. In: Microtechnologies in medicine and biology, 1st annual international, conference on. 2000, Lyon, France, 12–14 Oct 2000. IEEE, pp 130–135 Liew L-A, Bright VM (2000) Disposable CMOS catheter-tip pressure sensor for intracranial pressure measurement. In: Microtechnologies in medicine and biology, 1st annual international, conference on. 2000, Lyon, France, 12–14 Oct 2000. IEEE, pp 130–135
go back to reference Liu X, Yao Y, Ma J, Zhang Y, Wang Q, Zhang Z, Ren T (2015) Micro packaged MEMS pressure sensor for intracranial pressure measurement. J Semicond 36:064009CrossRef Liu X, Yao Y, Ma J, Zhang Y, Wang Q, Zhang Z, Ren T (2015) Micro packaged MEMS pressure sensor for intracranial pressure measurement. J Semicond 36:064009CrossRef
go back to reference Meng X, Zhao Y (2014) Packaging a piezoresistive pressure sensor for intracranial pressure monitoring. In: SENSORS, 2014 IEEE, Valencia, Spain, 2–5 November 2014. IEEE, pp 1827–1830 Meng X, Zhao Y (2014) Packaging a piezoresistive pressure sensor for intracranial pressure monitoring. In: SENSORS, 2014 IEEE, Valencia, Spain, 2–5 November 2014. IEEE, pp 1827–1830
go back to reference Mitra A (2005) Fundamentals of quality control and improvement, 2nd edn. Prentice-Hall of India, New DelhiMATH Mitra A (2005) Fundamentals of quality control and improvement, 2nd edn. Prentice-Hall of India, New DelhiMATH
go back to reference Mohamad M, Soin N, Ibrahim F (2016) Design of a high sensitivity MEMS piezoresistive intracranial pressure sensor using three turns meander shaped piezoresistors. In: 2016 International conference on bio-engineering for smart technologies (BioSMART), 4–7 Dec 2016, pp 1–4. https://doi.org/10.1109/biosmart.2016.7835596 Mohamad M, Soin N, Ibrahim F (2016) Design of a high sensitivity MEMS piezoresistive intracranial pressure sensor using three turns meander shaped piezoresistors. In: 2016 International conference on bio-engineering for smart technologies (BioSMART), 4–7 Dec 2016, pp 1–4. https://​doi.​org/​10.​1109/​biosmart.​2016.​7835596
go back to reference Mohammed AAS, Moussa WA, Lou E (2010) Optimization of geometric characteristics to improve sensing performance of MEMS piezoresistive strain sensors. J Micromech Microeng 20:015015CrossRef Mohammed AAS, Moussa WA, Lou E (2010) Optimization of geometric characteristics to improve sensing performance of MEMS piezoresistive strain sensors. J Micromech Microeng 20:015015CrossRef
go back to reference Mohammed AA, Moussa WA, Lou E (2011) High-performance piezoresistive MEMS strain sensor with low thermal sensitivity. Sensors 11:1819–1846CrossRef Mohammed AA, Moussa WA, Lou E (2011) High-performance piezoresistive MEMS strain sensor with low thermal sensitivity. Sensors 11:1819–1846CrossRef
go back to reference Moradi E, Bjorninen T, Sydanheimo L, Ukkonen L (2014) Analysis of biotelemetric interrogation of chronically implantable intracranial capacitive pressure sensor. In: RFID technology and applications conference (RFID-TA), 2014 IEEE. IEEE, pp 145–149 Moradi E, Bjorninen T, Sydanheimo L, Ukkonen L (2014) Analysis of biotelemetric interrogation of chronically implantable intracranial capacitive pressure sensor. In: RFID technology and applications conference (RFID-TA), 2014 IEEE. IEEE, pp 145–149
go back to reference Narayanaswamy M, Daniel RJ, Sumangala K, Jeyasehar CA (2011) Computer aided modelling and diaphragm design approach for high sensitivity silicon-on-insulator pressure sensors. Measurement 44:1924–1936CrossRef Narayanaswamy M, Daniel RJ, Sumangala K, Jeyasehar CA (2011) Computer aided modelling and diaphragm design approach for high sensitivity silicon-on-insulator pressure sensors. Measurement 44:1924–1936CrossRef
go back to reference Niu Z, Zhao Y, Tian B (2014) Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity. Rev Sci Instrum 85:015001CrossRef Niu Z, Zhao Y, Tian B (2014) Design optimization of high pressure and high temperature piezoresistive pressure sensor for high sensitivity. Rev Sci Instrum 85:015001CrossRef
go back to reference Pang B, Zhang Z-H, Ren T-L (2013) Simulation and design of micro pressure sensors applied to measure the intracranial pressure. In: Nano/micro engineered and molecular systems (NEMS), 2013 8th IEEE international conference on, Suzhou, China, 7–10 April 2013. IEEE, pp 120–123 Pang B, Zhang Z-H, Ren T-L (2013) Simulation and design of micro pressure sensors applied to measure the intracranial pressure. In: Nano/micro engineered and molecular systems (NEMS), 2013 8th IEEE international conference on, Suzhou, China, 7–10 April 2013. IEEE, pp 120–123
go back to reference Rosa JL, Robin A, Silva M, Baldan CA, Peres MP (2009) Electrodeposition of copper on titanium wires: Taguchi experimental design approach. J Mater Process Technol 209:1181–1188CrossRef Rosa JL, Robin A, Silva M, Baldan CA, Peres MP (2009) Electrodeposition of copper on titanium wires: Taguchi experimental design approach. J Mater Process Technol 209:1181–1188CrossRef
go back to reference Shing T-K (1998) Robust design of silicon piezoresistive pressure sensor MSM98, Santa Clara Shing T-K (1998) Robust design of silicon piezoresistive pressure sensor MSM98, Santa Clara
go back to reference Suhling JC, Jaeger RC (2001) Silicon piezoresistive stress sensors and their application in electronic packaging. IEEE Sens J 1:14–30CrossRef Suhling JC, Jaeger RC (2001) Silicon piezoresistive stress sensors and their application in electronic packaging. IEEE Sens J 1:14–30CrossRef
go back to reference Taguchi G, Chowdhury S, Wu Y (2005) Taguchi’s quality engineering handbook. Wiley, OxfordMATH Taguchi G, Chowdhury S, Wu Y (2005) Taguchi’s quality engineering handbook. Wiley, OxfordMATH
go back to reference Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34:313–318CrossRef Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34:313–318CrossRef
go back to reference Wu Z, Bhattacharjee N, Li C, Hartings J, Narayan R, Ahn CH (2013) A new intracranial pressure sensor on polyimide lab-on-a-tube using exchanged polysilicon piezoresistors. In: Solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 transducers & eurosensors XXVII: the 17th international conference on, Barcelona, Spain, 16–20 June 2013. IEEE, pp 1779–1782 Wu Z, Bhattacharjee N, Li C, Hartings J, Narayan R, Ahn CH (2013) A new intracranial pressure sensor on polyimide lab-on-a-tube using exchanged polysilicon piezoresistors. In: Solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 transducers & eurosensors XXVII: the 17th international conference on, Barcelona, Spain, 16–20 June 2013. IEEE, pp 1779–1782
go back to reference Zhang Y-H, Yang C, Zhang Z-H, Lin H-W, Liu L-T, Ren T-L (2007) A novel pressure microsensor with 30-μm-thick diaphragm and meander-shaped piezoresistors partially distributed on high-stress bulk silicon region. Sens J IEEE 7:1742–1748CrossRef Zhang Y-H, Yang C, Zhang Z-H, Lin H-W, Liu L-T, Ren T-L (2007) A novel pressure microsensor with 30-μm-thick diaphragm and meander-shaped piezoresistors partially distributed on high-stress bulk silicon region. Sens J IEEE 7:1742–1748CrossRef
go back to reference Zhang Y, Zhang Z, Pang B, Yuan L, Ren T (2014) Tiny MEMS-based pressure sensors in the measurement of intracranial pressure. Tsinghua Sci Technol 19:161–167CrossRef Zhang Y, Zhang Z, Pang B, Yuan L, Ren T (2014) Tiny MEMS-based pressure sensors in the measurement of intracranial pressure. Tsinghua Sci Technol 19:161–167CrossRef
Metadata
Title
Design optimisation of high sensitivity MEMS piezoresistive intracranial pressure sensor using Taguchi approach
Authors
Mazita Mohamad
Norhayati Soin
Fatimah Ibrahim
Publication date
04-01-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 6/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3699-8

Other articles of this Issue 6/2018

Microsystem Technologies 6/2018 Go to the issue