Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Designing Metal-Organic Frameworks Based Photocatalyst for Specific Photocatalytic Reactions: A Crystal Engineering Approach

Authors : Partha Pratim Bag, Pathik Sahoo

Published in: Green Photocatalysts for Energy and Environmental Process

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The spatial arrangement of designed reaction centers with engineered porosity withdraws a special attention in exploring metal-organic frameworks (MOFs) for developing a wide range of photocatalyst in the last decade. This chapter targets to recapitulate the recent advancement of MOF-derived photocatalyst with their mechanism, types, structural engineering, and various practical uses.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Banerjee R, Sahoo SC, Kundu T (2016) Water soluble Metal-Organic Frameworks (MOFs). U.S. Patent US 9290518 B2, filed October 3, 2012, and issued March 22, 2016 Banerjee R, Sahoo SC, Kundu T (2016) Water soluble Metal-Organic Frameworks (MOFs). U.S. Patent US 9290518 B2, filed October 3, 2012, and issued March 22, 2016
go back to reference Bellitto C, Dessy G, Fares V (1985) Synthesis, x-ray crystal structure, and chemical and physical properties of the new linear-chain mixed-valence complex (.mu.- iodo)tetrakis(dithioacetato)dinickel, Ni2(CH3CS2)4I, and x-ray crystal structure of the precursor tetrakis(dithioacetato)dinickel(II), Ni2(CH3CS2)4. Inorg Chem 24:2815–2820. https://doi.org/10.1021/ic00212a023CrossRef Bellitto C, Dessy G, Fares V (1985) Synthesis, x-ray crystal structure, and chemical and physical properties of the new linear-chain mixed-valence complex (.mu.- iodo)tetrakis(dithioacetato)dinickel, Ni2(CH3CS2)4I, and x-ray crystal structure of the precursor tetrakis(dithioacetato)dinickel(II), Ni2(CH3CS2)4. Inorg Chem 24:2815–2820. https://​doi.​org/​10.​1021/​ic00212a023CrossRef
go back to reference Bolton JR, Mataga N, McLendon G (eds) (1991) Electron transfer in inorganic, organic and biological systems, Advances in chemistry series. American Chemical Society, Washington, DC Bolton JR, Mataga N, McLendon G (eds) (1991) Electron transfer in inorganic, organic and biological systems, Advances in chemistry series. American Chemical Society, Washington, DC
go back to reference Chambers MB, Wang X, Elgrishi N, Hendon CH, Walsh A, Bonnefoy J, Canivet J, Quadrelli EA, Farrusseng D, Mellot-Draznieks C, Fontecave M (2015) Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. ChemSusChem 8:603–608. https://doi.org/10.1002/cssc.201403345CrossRef Chambers MB, Wang X, Elgrishi N, Hendon CH, Walsh A, Bonnefoy J, Canivet J, Quadrelli EA, Farrusseng D, Mellot-Draznieks C, Fontecave M (2015) Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. ChemSusChem 8:603–608. https://​doi.​org/​10.​1002/​cssc.​201403345CrossRef
go back to reference Chambers MB, Wang X, Ellezam L, Ersen O, Fontecave M, Sanchez C, Rozes L, Mellot-Draznieks C (2017) Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2. J Am Chem Soc 139: 8222–8228 and the reference there in. https://doi.org/10.1021/jacs.7b02186CrossRef Chambers MB, Wang X, Ellezam L, Ersen O, Fontecave M, Sanchez C, Rozes L, Mellot-Draznieks C (2017) Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2. J Am Chem Soc 139: 8222–8228 and the reference there in. https://​doi.​org/​10.​1021/​jacs.​7b02186CrossRef
go back to reference Desiraju GR (ed) (1989) Crystal engineering: the design of organic solids. Elsevier Scientific Publishers, Amsterdam/New York Desiraju GR (ed) (1989) Crystal engineering: the design of organic solids. Elsevier Scientific Publishers, Amsterdam/New York
go back to reference Feng PL, Perry JJ IV, Nikodemski S, Jacobs BW, Meek ST, Allendorf MD (2010) Assessing the purity of metal−organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. J Am Chem Soc 132:15487–15489. https://doi.org/10.1021/ja1065625CrossRef Feng PL, Perry JJ IV, Nikodemski S, Jacobs BW, Meek ST, Allendorf MD (2010) Assessing the purity of metal−organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. J Am Chem Soc 132:15487–15489. https://​doi.​org/​10.​1021/​ja1065625CrossRef
go back to reference Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
go back to reference Han Y, Bai C, Zhang L, Wu J, Meng H, Xu J, Xu Y, Liang Z, Zhang X (2018) A facile strategy for fabricating AgI–MIL-53(Fe) composites: superior interfacial contact and enhanced visible light photocatalytic performance. New J Chem 42:3799–3807. https://doi.org/10.1039/C8NJ00417JCrossRef Han Y, Bai C, Zhang L, Wu J, Meng H, Xu J, Xu Y, Liang Z, Zhang X (2018) A facile strategy for fabricating AgI–MIL-53(Fe) composites: superior interfacial contact and enhanced visible light photocatalytic performance. New J Chem 42:3799–3807. https://​doi.​org/​10.​1039/​C8NJ00417JCrossRef
go back to reference Hendon CH, Tiana D, Fontecave M, Sanchez C, D’arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A (2013) Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization. J Am Chem Soc 135:10942–10945. https://doi.org/10.1021/ja405350uCrossRef Hendon CH, Tiana D, Fontecave M, Sanchez C, D’arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A (2013) Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization. J Am Chem Soc 135:10942–10945. https://​doi.​org/​10.​1021/​ja405350uCrossRef
go back to reference Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. J Phys Chem C 116:20848–20853. https://doi.org/10.1021/jp3046005CrossRef Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. J Phys Chem C 116:20848–20853. https://​doi.​org/​10.​1021/​jp3046005CrossRef
go back to reference Hückel E (1931) Perspective on “Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Beziehungen”. Z Phys 70:204–286CrossRef Hückel E (1931) Perspective on “Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Beziehungen”. Z Phys 70:204–286CrossRef
go back to reference Kumar A, Guo C, Sharma G et al (2016) Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Adv 6:13251–13263. https://doi.org/10.1039/C5RA23372KCrossRef Kumar A, Guo C, Sharma G et al (2016) Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Adv 6:13251–13263. https://​doi.​org/​10.​1039/​C5RA23372KCrossRef
go back to reference Larsen RW, Wojtas L (2013) Photoinduced inter-cavity electron transfer between Ru(II)tris(2,2′-bipyridne) and Co(II)tris(2,2′-bipyridine) Co-encapsulated within a Zn(II)-trimesic acid metal organic framework. J Mater Chem A 1:14133–14139. https://doi.org/10.1039/C3TA13422ACrossRef Larsen RW, Wojtas L (2013) Photoinduced inter-cavity electron transfer between Ru(II)tris(2,2′-bipyridne) and Co(II)tris(2,2′-bipyridine) Co-encapsulated within a Zn(II)-trimesic acid metal organic framework. J Mater Chem A 1:14133–14139. https://​doi.​org/​10.​1039/​C3TA13422ACrossRef
go back to reference Lau VW-H, Moudrakovski I, Botari T, Weinberger S, Mesch MB, Duppel V, Senker J, Blum V, Lotsch BV (2016) Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat Commun 7:12165. https://doi.org/10.1038/ncomms12165CrossRef Lau VW-H, Moudrakovski I, Botari T, Weinberger S, Mesch MB, Duppel V, Senker J, Blum V, Lotsch BV (2016) Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat Commun 7:12165. https://​doi.​org/​10.​1038/​ncomms12165CrossRef
go back to reference Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SCJ, Wei WD, Yang Y, Hupp JT, Huo F (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316. https://doi.org/10.1038/nchem.1272CrossRef Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SCJ, Wei WD, Yang Y, Hupp JT, Huo F (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316. https://​doi.​org/​10.​1038/​nchem.​1272CrossRef
go back to reference Maity K, Kundu T, Banerjee R, Biradha K (2015) One-dimensional water cages with repeat units of (H2O)24 resembling pagodane trapped in a 3D coordination polymer: proton conduction and tunable luminescence emission by adsorption of anionic dyes. CrystEngComm 17:4439–4443. https://doi.org/10.1039/C5CE00969CCrossRef Maity K, Kundu T, Banerjee R, Biradha K (2015) One-dimensional water cages with repeat units of (H2O)24 resembling pagodane trapped in a 3D coordination polymer: proton conduction and tunable luminescence emission by adsorption of anionic dyes. CrystEngComm 17:4439–4443. https://​doi.​org/​10.​1039/​C5CE00969CCrossRef
go back to reference Mondloch JE, Bury W, FairenJimenez D, Kwon S, DeMarco EJ, Weston MH, Sarjeant AA, Nguyen ST, Stair PC, Snurr RQ, Farha OK, Hupp JT (2013) Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J Am Chem Soc 135:10294–10297. https://doi.org/10.1021/ja4050828CrossRef Mondloch JE, Bury W, FairenJimenez D, Kwon S, DeMarco EJ, Weston MH, Sarjeant AA, Nguyen ST, Stair PC, Snurr RQ, Farha OK, Hupp JT (2013) Vapor-phase metalation by atomic layer deposition in a metal–organic framework. J Am Chem Soc 135:10294–10297. https://​doi.​org/​10.​1021/​ja4050828CrossRef
go back to reference Okawa H, Shigematsu A, Sadakiyo M, Miyagawa T, Yoneda K, Ohba M, Kitagawa H (2009) Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = MnII, FeII, CoII; NH(prol)3+ = Tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. J Am Chem Soc 131:13516–13522. https://doi.org/10.1021/ja905368dCrossRef Okawa H, Shigematsu A, Sadakiyo M, Miyagawa T, Yoneda K, Ohba M, Kitagawa H (2009) Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M = MnII, FeII, CoII; NH(prol)3+ = Tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. J Am Chem Soc 131:13516–13522. https://​doi.​org/​10.​1021/​ja905368dCrossRef
go back to reference Okawa H, Sadakiyo M, Yamada T, Maesato M, Ohba M, Kitagawa H (2013) Proton-conductive magnetic metal–organic frameworks, {NR3(CH2COOH)}[MaIIMbIII(ox)3]: effect of carboxyl residue upon proton conduction. J Am Chem Soc 135:2256–2262. https://doi.org/10.1021/ja309968uCrossRef Okawa H, Sadakiyo M, Yamada T, Maesato M, Ohba M, Kitagawa H (2013) Proton-conductive magnetic metal–organic frameworks, {NR3(CH2COOH)}[MaIIMbIII(ox)3]: effect of carboxyl residue upon proton conduction. J Am Chem Soc 135:2256–2262. https://​doi.​org/​10.​1021/​ja309968uCrossRef
go back to reference Paille G, Gomez-Mingot M, Roch-Marchal C, Lassalle-Kaiser B, Mialane P, Fontecave M, Mellot-Draznieks C, Dolbecq A (2018) A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal–organic framework for water oxidation. J Am Chem Soc 140:3613–3618. https://doi.org/10.1021/jacs.7b11788CrossRef Paille G, Gomez-Mingot M, Roch-Marchal C, Lassalle-Kaiser B, Mialane P, Fontecave M, Mellot-Draznieks C, Dolbecq A (2018) A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal–organic framework for water oxidation. J Am Chem Soc 140:3613–3618. https://​doi.​org/​10.​1021/​jacs.​7b11788CrossRef
go back to reference Portillo AS, Baldoví HG, Fernandez MTG, Navalón S, Atienzar P, Ferrer B, Alvaro M, Garcia H, Li Z (2017) Ti as mediator in the photoinduced electron transfer of mixed-metal NH2–UiO-66(Zr/Ti): transient absorption spectroscopy study and application in photovoltaic cell. J Phys Chem C 121:7015–7024. https://doi.org/10.1021/acs.jpcc.6b13068CrossRef Portillo AS, Baldoví HG, Fernandez MTG, Navalón S, Atienzar P, Ferrer B, Alvaro M, Garcia H, Li Z (2017) Ti as mediator in the photoinduced electron transfer of mixed-metal NH2–UiO-66(Zr/Ti): transient absorption spectroscopy study and application in photovoltaic cell. J Phys Chem C 121:7015–7024. https://​doi.​org/​10.​1021/​acs.​jpcc.​6b13068CrossRef
go back to reference Rosseinsky DR, Tonge JS, Berthelot J, Cassidy JF (1987) Site-transfer conductivity in solid iron hexacyanoferrates by dielectric relaxometry, voltammetry and spectroscopy. Prussian Blue, congeners and mixtures. J Chem Soc Faraday Trans 83:231–243. https://doi.org/10.1039/F19878300231CrossRef Rosseinsky DR, Tonge JS, Berthelot J, Cassidy JF (1987) Site-transfer conductivity in solid iron hexacyanoferrates by dielectric relaxometry, voltammetry and spectroscopy. Prussian Blue, congeners and mixtures. J Chem Soc Faraday Trans 83:231–243. https://​doi.​org/​10.​1039/​F19878300231CrossRef
go back to reference Toyao T, Saito M, Horiuchi Y, Mochizuki K, Iwata M, Higashimura H, Matsuoka M (2013) Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visiblelight- responsive metal–organic framework photocatalyst. Cat Sci Technol 3:2092–2097CrossRef Toyao T, Saito M, Horiuchi Y, Mochizuki K, Iwata M, Higashimura H, Matsuoka M (2013) Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visiblelight- responsive metal–organic framework photocatalyst. Cat Sci Technol 3:2092–2097CrossRef
go back to reference Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64:8553–8557CrossRef Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64:8553–8557CrossRef
go back to reference Wang M, Liu J, Guo C, Gao X, Gong C, Wang Y, Liu B, Li X, Gurzadyana GG, Sun L (2018a) Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: the role of the morphology effect. J Mater Chem A 6:4768–4775. https://doi.org/10.1039/C8TA00154ECrossRef Wang M, Liu J, Guo C, Gao X, Gong C, Wang Y, Liu B, Li X, Gurzadyana GG, Sun L (2018a) Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: the role of the morphology effect. J Mater Chem A 6:4768–4775. https://​doi.​org/​10.​1039/​C8TA00154ECrossRef
go back to reference Yuan X, Wang H, Wu Y, Zeng G, Chen X, Leng L, Wu Z, Li H (2016) One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity. Appl Organomet Chem 30:289–296. https://doi.org/10.1002/aoc.3430CrossRef Yuan X, Wang H, Wu Y, Zeng G, Chen X, Leng L, Wu Z, Li H (2016) One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity. Appl Organomet Chem 30:289–296. https://​doi.​org/​10.​1002/​aoc.​3430CrossRef
Metadata
Title
Designing Metal-Organic Frameworks Based Photocatalyst for Specific Photocatalytic Reactions: A Crystal Engineering Approach
Authors
Partha Pratim Bag
Pathik Sahoo
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-17638-9_6