Skip to main content
Top
Published in: Meccanica 8/2020

11-06-2020

Designing stress for optimizing and toughening truss-like structures

Authors: V. Minutolo, L. Esposito, E. Sacco, M. Fraldi

Published in: Meccanica | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Optimization of materials and structures is a crucial step in the design of man-made mechanical components for a wide field of engineering applications. It also plays a key role in mechanobiology of living systems, being involved by nature across the scales, from single-cell to tissues and organs, as a strategy to minimize metabolic cost and maximize biomechanical performances. The synergy between  the continuously increasing development of high-resolution 3D printing technologies  and the possibility to predict chemical and physical properties through molecular dynamics-based numerical analyses has recently contributed to boost the use of both design and topology optimization procedures. They are employed in ab initio simulations as key strategies for deciding microstructures to improve mechanical performances and, concretely, to achieve prototypes of new material components. With this in mind, we here propose to abandon the classical approach of using a single scalar objective function employed in the classical design and topology optimization strategies, to introduce multiple quantities to be minimized, identified as the differences between material yield stress and the maximum von Mises stress. After mathematically justifying the well-posedness  of this unconventional choice for the case at hand, it is highlighted that the proposed strategy is based on the concept of "equalizing" a proper stress measure at any point of the body and, for this reason, it is baptized as Galilei’s optimization, in honor of the Italian scholar who somehow first wondered about the possibility of changing sizes of beams to have uniform internal forces and, in turn, minimum weight. By exploiting analytical solutions and ad hoc implementing a parametric finite element algorithm to be applied to a wide variety of solids with arbitrary complex structural geometries, including nested or hierarchically organized architectures, it is first demonstrated that the proposed optimization strategy roughly retraces principles invoked by nature to guide growth, remodeling and shaping of biomaterials. More importantly, by means of several benchmark examples, we finally show the proposed procedure might be also helpfully employed to conceive a new class of micro-structured, eventually 3D-printed materials exhibiting surprising post-elastic properties, such as high overall resilience and toughness, in particular obtaining a decrease of stress concentration and a slowing down of crack propagation as direct effects of the optimization, which de facto minimizes stress gradients wherever in the solid domain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Ahrari A, Atai AA, Deb K (2015) Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy. Eng Optim 47(8):1063–1084MathSciNetCrossRef Ahrari A, Atai AA, Deb K (2015) Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy. Eng Optim 47(8):1063–1084MathSciNetCrossRef
3.
go back to reference Ahrari A, Deb K (2016) An improved fully stressed design evolution strategy for layout optimization of truss structures. Comput Struct 164:127–144CrossRef Ahrari A, Deb K (2016) An improved fully stressed design evolution strategy for layout optimization of truss structures. Comput Struct 164:127–144CrossRef
4.
go back to reference Andreasen CS, Sigmund O (2013) Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput Methods in Appl Mech Eng 258:55–62 Andreasen CS, Sigmund O (2013) Topology optimization of fluid–structure-interaction problems in poroelasticity. Comput Methods in Appl Mech Eng 258:55–62
5.
go back to reference Balduzzi G, Aminbaghai M, Sacco E, Füssl J, Eberhardsteiner J, Auricchio F (2016) Non-prismatic beams: a simple and effective Timoshenko-like model. Int J Solids Struct 90:236–250CrossRef Balduzzi G, Aminbaghai M, Sacco E, Füssl J, Eberhardsteiner J, Auricchio F (2016) Non-prismatic beams: a simple and effective Timoshenko-like model. Int J Solids Struct 90:236–250CrossRef
6.
go back to reference Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
7.
go back to reference Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224ADSMathSciNetMATHCrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224ADSMathSciNetMATHCrossRef
8.
go back to reference Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimisation. Arch Appl Mech 69:635–654MATHCrossRef Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimisation. Arch Appl Mech 69:635–654MATHCrossRef
9.
go back to reference Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, BerlinMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, BerlinMATH
11.
go back to reference Bruns TE (2007) Topology optimization of convection-dominated, steady-state heat transfer problem. Int J Heat Mass Transf 50:2859–2873MATHCrossRef Bruns TE (2007) Topology optimization of convection-dominated, steady-state heat transfer problem. Int J Heat Mass Transf 50:2859–2873MATHCrossRef
12.
go back to reference Byun JK, Hahn SY (2001) Application of topology optimization to electromagnetic system. Int J Appl Electrom 13:25–33 Byun JK, Hahn SY (2001) Application of topology optimization to electromagnetic system. Int J Appl Electrom 13:25–33
13.
go back to reference Carotenuto AR, Cutolo A, Petrillo A, Fusco R, Arra C, Sansone M, Larobina D, Cardoso L, Fraldi M (2018) Growth and in vivo stresses traced through tumor mechanics enriched with predator-prey cells dynamics. J Mech Behav Biomed Mat 86:55–70 Carotenuto AR, Cutolo A, Petrillo A, Fusco R, Arra C, Sansone M, Larobina D, Cardoso L, Fraldi M (2018) Growth and in vivo stresses traced through tumor mechanics enriched with predator-prey cells dynamics. J Mech Behav Biomed Mat 86:55–70
14.
go back to reference Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465MATHCrossRef Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465MATHCrossRef
15.
16.
go back to reference Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557–575ADSCrossRef Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557–575ADSCrossRef
17.
go back to reference Esposito L, Cutolo A, Barile M, Lecce L, Mensitieri G, Sacco E, Fraldi M (2019) Topology optimization-guided stiffening of composites realized through automated fiber placement. Compos Part B Eng 164:309–323CrossRef Esposito L, Cutolo A, Barile M, Lecce L, Mensitieri G, Sacco E, Fraldi M (2019) Topology optimization-guided stiffening of composites realized through automated fiber placement. Compos Part B Eng 164:309–323CrossRef
18.
go back to reference Feury C, Geradin M (1978) Optimality criteria and mathematical programming in structural weight optimization. Comput Struct 8(1):7–17MATHCrossRef Feury C, Geradin M (1978) Optimality criteria and mathematical programming in structural weight optimization. Comput Struct 8(1):7–17MATHCrossRef
19.
go back to reference Fraldi M, Esposito L, Perrella G, Cutolo A, Cowin SC (2010) Topological optimization in hip prosthesis design. Biomech Model Mechanobiol 9(4):389–402CrossRef Fraldi M, Esposito L, Perrella G, Cutolo A, Cowin SC (2010) Topological optimization in hip prosthesis design. Biomech Model Mechanobiol 9(4):389–402CrossRef
20.
go back to reference Jang IG, Kim IY (2008) Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361CrossRef Jang IG, Kim IY (2008) Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361CrossRef
21.
go back to reference Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 52(3):507–526MathSciNetCrossRef Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 52(3):507–526MathSciNetCrossRef
22.
go back to reference Kirsch G (1898) Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Zeitschrift des Vereines Deutscher Ingenieure 42:797–807 Kirsch G (1898) Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Zeitschrift des Vereines Deutscher Ingenieure 42:797–807
23.
go back to reference Minutolo V, Ruocco E, Ciaramella S (2009) Isoparametric FEM vs. BEM for elastic functionally graded materials. CMES 41(1):27–48MathSciNetMATH Minutolo V, Ruocco E, Ciaramella S (2009) Isoparametric FEM vs. BEM for elastic functionally graded materials. CMES 41(1):27–48MathSciNetMATH
24.
go back to reference Noilublao N, Bureerat S (2011) Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms. Comput Struct 89(23–24):2531–2538CrossRef Noilublao N, Bureerat S (2011) Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms. Comput Struct 89(23–24):2531–2538CrossRef
25.
go back to reference Panagant N, Bureerat S (2018) Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng Optim 50(10):1645–1661MathSciNetCrossRef Panagant N, Bureerat S (2018) Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng Optim 50(10):1645–1661MathSciNetCrossRef
26.
go back to reference Papadrakakis M, Lagaros N, Plevris V (2002) Multi-objective optimization of skeletal structures under static and seismic loading conditions. Eng Optim 34(6):645–669MATHCrossRef Papadrakakis M, Lagaros N, Plevris V (2002) Multi-objective optimization of skeletal structures under static and seismic loading conditions. Eng Optim 34(6):645–669MATHCrossRef
27.
go back to reference Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369CrossRef Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369CrossRef
28.
go back to reference Saka M (1990) Optimum design of pin-jointed steel structures with practical applications. J Struct Eng ASCE 116(10):2599–2620CrossRef Saka M (1990) Optimum design of pin-jointed steel structures with practical applications. J Struct Eng ASCE 116(10):2599–2620CrossRef
29.
go back to reference Seki Y, Kad B, Benson D, Meyers MA (2010) The toucan beak: structure and mechanical response. Mater Sci Eng C 26:1412–1420CrossRef Seki Y, Kad B, Benson D, Meyers MA (2010) The toucan beak: structure and mechanical response. Mater Sci Eng C 26:1412–1420CrossRef
31.
go back to reference Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41:661–670MATHCrossRef Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41:661–670MATHCrossRef
32.
go back to reference Subramanian V, Harion JL (2018) Topology optimization of conductive heat transfer devices—an experimental investigation. Appl Therm Eng 131:390–411CrossRef Subramanian V, Harion JL (2018) Topology optimization of conductive heat transfer devices—an experimental investigation. Appl Therm Eng 131:390–411CrossRef
33.
go back to reference Takezawa A, Yonekura K, Koizumi Y, Zhang X, Kitamura M (2018) Isotropic Ti–6Al–4V lattice via topology optimization and electron-beam melting. Addit Manuf 22:634–642 Takezawa A, Yonekura K, Koizumi Y, Zhang X, Kitamura M (2018) Isotropic Ti–6Al–4V lattice via topology optimization and electron-beam melting. Addit Manuf 22:634–642
34.
go back to reference Topping BHV (1983) Shape optimization of skeletal structures: a review. J Struct Eng 109:1933–1951CrossRef Topping BHV (1983) Shape optimization of skeletal structures: a review. J Struct Eng 109:1933–1951CrossRef
35.
36.
go back to reference Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRef Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRef
37.
go back to reference Wu CY, Tseng KY (2010) Truss structure optimization using adaptive multi-population differential evolution. Struct Multidiscip Optim 42(4):575–590CrossRef Wu CY, Tseng KY (2010) Truss structure optimization using adaptive multi-population differential evolution. Struct Multidiscip Optim 42(4):575–590CrossRef
38.
go back to reference Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRef
39.
go back to reference Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336ADSCrossRef Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336ADSCrossRef
Metadata
Title
Designing stress for optimizing and toughening truss-like structures
Authors
V. Minutolo
L. Esposito
E. Sacco
M. Fraldi
Publication date
11-06-2020
Publisher
Springer Netherlands
Published in
Meccanica / Issue 8/2020
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-020-01189-z

Other articles of this Issue 8/2020

Meccanica 8/2020 Go to the issue

Premium Partners