Skip to main content
Top
Published in: Archive of Applied Mechanics 5/2021

07-01-2021 | Original

Detection of torsional guided wave generation using macro-fiber composite transducers and basis pursuit denoising

Authors: K. Fernandez, E. Rojas, A. Baltazar, R. Mijarez

Published in: Archive of Applied Mechanics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In engineering structures, such as large fluid-filled pipelines, continuous monitoring for damage detection is needed. To address this issue, we study the generation of guided waves in pipes by using a circumferential strip of macro fiber composite transducer to generate and detect torsional and flexural lower modes. The propagated elastic waves and their resulting reflected and mode-converted signals at the interaction wave discontinuity are post-processed with basis pursuit denoising using a Gabor dictionary to improve signal identification. Numerical results are obtained and experimentally tested on a stainless-steel pipe A-36 (43.6 and 48.2 mm in inner and outer diameter). It was found that the proposed method makes it possible to identify an artificial discontinuity by detecting the scattered wave and converted modes of a propagated torsional wave.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kannan, E., Maxfield, B.W., Balasubramania, K.: SHM of pipes using torsional waves generated by in situ magnetostrictive tapes. Smart Mater. Struct. 16(6), 2505–2515 (2007)CrossRef Kannan, E., Maxfield, B.W., Balasubramania, K.: SHM of pipes using torsional waves generated by in situ magnetostrictive tapes. Smart Mater. Struct. 16(6), 2505–2515 (2007)CrossRef
2.
go back to reference Cui, L., Lim, S.I., Shi, M., Liu, Y., Soh, C.K.: Detection and monitoring of axial cracks in cylindrical structures using torsional wave generated by piezoelectric macro-fiber composite. Health Monitor. Struct. Biol. Syst. 8348, 1–12 (2012) Cui, L., Lim, S.I., Shi, M., Liu, Y., Soh, C.K.: Detection and monitoring of axial cracks in cylindrical structures using torsional wave generated by piezoelectric macro-fiber composite. Health Monitor. Struct. Biol. Syst. 8348, 1–12 (2012)
3.
go back to reference Demma, A., Cawley, P., Lowe, M.: The reflection of the fundamental torsional mode from cracks and notches in pipes. J. Acoust. Soc. Am. 114(2), 611–6625 (2003)CrossRef Demma, A., Cawley, P., Lowe, M.: The reflection of the fundamental torsional mode from cracks and notches in pipes. J. Acoust. Soc. Am. 114(2), 611–6625 (2003)CrossRef
4.
go back to reference Løvstad, A., Cawley, P.: The reflection of the fundamental torsional guided wave from multiple circular holes in pipes. NDT&E Int. 44, 553–562 (2011)CrossRef Løvstad, A., Cawley, P.: The reflection of the fundamental torsional guided wave from multiple circular holes in pipes. NDT&E Int. 44, 553–562 (2011)CrossRef
5.
go back to reference Rose, J.L.: Guided wave testing of water loaded structures. Mater. Eval. 61(1), 3–24 (2003) Rose, J.L.: Guided wave testing of water loaded structures. Mater. Eval. 61(1), 3–24 (2003)
6.
go back to reference Shin, H.J., Rose, J.L.: Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders. Ultrasonics 37, 355–363 (1999)CrossRef Shin, H.J., Rose, J.L.: Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders. Ultrasonics 37, 355–363 (1999)CrossRef
7.
go back to reference Ratassepp, M., Fletcher, S., Lowe, M.J.S.: Scattering of the fundamental torsional mode at an axial crack in a pipe. J. Acoust. Soc. Am. 27(2), 730–740 (2010)CrossRef Ratassepp, M., Fletcher, S., Lowe, M.J.S.: Scattering of the fundamental torsional mode at an axial crack in a pipe. J. Acoust. Soc. Am. 27(2), 730–740 (2010)CrossRef
8.
go back to reference Kwun, H., Kim, S.-Y., Choi, M.-S.: Reflection of the fundamental torsional wave from a stepwise thickness change in a pipe. J. Korean Phys. Soc. 46(6), 1352–1357 (2005) Kwun, H., Kim, S.-Y., Choi, M.-S.: Reflection of the fundamental torsional wave from a stepwise thickness change in a pipe. J. Korean Phys. Soc. 46(6), 1352–1357 (2005)
9.
go back to reference Ma, J., Simonetti, F., Lowe, M.J.S.: Scattering of the fundamental torsional mode by an axisymmetric layer inside a pipe. J. Acoust. Soc. Am. 120(4), 1871–1880 (2006)CrossRef Ma, J., Simonetti, F., Lowe, M.J.S.: Scattering of the fundamental torsional mode by an axisymmetric layer inside a pipe. J. Acoust. Soc. Am. 120(4), 1871–1880 (2006)CrossRef
10.
go back to reference Davies, J., Cawley, P.: The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 759–770 (2009)CrossRef Davies, J., Cawley, P.: The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 759–770 (2009)CrossRef
11.
go back to reference Cho, J., Anderson, M., Richards, R., Bahr, D., Richards, C.: Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment. J. Micromech. Microeng. 15, 1804–1809 (2005)CrossRef Cho, J., Anderson, M., Richards, R., Bahr, D., Richards, C.: Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment. J. Micromech. Microeng. 15, 1804–1809 (2005)CrossRef
12.
go back to reference Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2003)CrossRef Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2003)CrossRef
13.
go back to reference Thien, A.B., Park, G., Farr, C.R.: Health monitoring of pipeline systems using macro-fiber composite activesensors. Steel Struct. 7, 33–48 (2007) Thien, A.B., Park, G., Farr, C.R.: Health monitoring of pipeline systems using macro-fiber composite activesensors. Steel Struct. 7, 33–48 (2007)
14.
go back to reference Meyers, F., Loh, K., Doods, J., Baltazar, A.: Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology 24(18), 1–10 (2013)CrossRef Meyers, F., Loh, K., Doods, J., Baltazar, A.: Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites. Nanotechnology 24(18), 1–10 (2013)CrossRef
15.
go back to reference Panda, S., Reddy, N.H., Kumar, A.S.P.: Design and finite element analysis of a short piezoelectric fiber-reinforced composite actuator. Arch. Appl. Mech. 85, 691–711 (2015)CrossRef Panda, S., Reddy, N.H., Kumar, A.S.P.: Design and finite element analysis of a short piezoelectric fiber-reinforced composite actuator. Arch. Appl. Mech. 85, 691–711 (2015)CrossRef
16.
go back to reference Baltazar, A., Rojas, E.: Structural health monitoring in cylindrical structures using helical guided wave propagation. In: International congress on ultrasonics, France (2015) Baltazar, A., Rojas, E.: Structural health monitoring in cylindrical structures using helical guided wave propagation. In: International congress on ultrasonics, France (2015)
17.
go back to reference Gang, R., Dongseok, Y., Hogeon, S., Minkyoo, S., Kyung-Young, J.: Feasibility of MFC (macro-fiber composite) transducers for guided wave technique. J. Korean Soc. Nondestruct. Test. 33(3), 264–269 (2013)CrossRef Gang, R., Dongseok, Y., Hogeon, S., Minkyoo, S., Kyung-Young, J.: Feasibility of MFC (macro-fiber composite) transducers for guided wave technique. J. Korean Soc. Nondestruct. Test. 33(3), 264–269 (2013)CrossRef
18.
go back to reference Caliò, R., Rongala, U.B., Camboni, D., Milazzo, M., Stefanini, C., De Petris, G., Oddo, C.M.: Piezoelectric energy harvesting solutions. Sensors 14(3), 4755–4790 (2014)CrossRef Caliò, R., Rongala, U.B., Camboni, D., Milazzo, M., Stefanini, C., De Petris, G., Oddo, C.M.: Piezoelectric energy harvesting solutions. Sensors 14(3), 4755–4790 (2014)CrossRef
19.
go back to reference Hyun, J., Choi, Y.-T., Wereley, N.M.W., Purekar, A.S.: Energy harvesting devices using macro-fiber composite materials. J. Intell. Mater. Syst. Struct. 21, 647–658 (2010)CrossRef Hyun, J., Choi, Y.-T., Wereley, N.M.W., Purekar, A.S.: Energy harvesting devices using macro-fiber composite materials. J. Intell. Mater. Syst. Struct. 21, 647–658 (2010)CrossRef
20.
go back to reference Gao, L., Lu, Q., Fei, F., Liu, L., Liu, Y., Leng, J.: Active vibration control based on piezoelectric smart composite. Smart Mater. Struct. 22(12), 1–12 (2013)CrossRef Gao, L., Lu, Q., Fei, F., Liu, L., Liu, Y., Leng, J.: Active vibration control based on piezoelectric smart composite. Smart Mater. Struct. 22(12), 1–12 (2013)CrossRef
21.
go back to reference Eaton, M., Pullin, R., Holford, K., Evans, S., Featherston, C., Rose, A.: Use of macro fiber composite transducers as acoustic emission sensors. Sensor Sens. 1, 68–79 (2009) Eaton, M., Pullin, R., Holford, K., Evans, S., Featherston, C., Rose, A.: Use of macro fiber composite transducers as acoustic emission sensors. Sensor Sens. 1, 68–79 (2009)
22.
go back to reference Collet, M., Ruzzene, M., Cunefare, K.A.: Generation of Lame waves through surface mounted macro-fiber composite transducers. Smart Mater. Struct. 20, 025020 (2011)CrossRef Collet, M., Ruzzene, M., Cunefare, K.A.: Generation of Lame waves through surface mounted macro-fiber composite transducers. Smart Mater. Struct. 20, 025020 (2011)CrossRef
23.
go back to reference Rojas, E., Baltazar, A., Loh, K.: Damage detection using the signal entropy of an ultrasonic sensor network. Smart Mater. Struct. 24(7), 1–11 (2015)CrossRef Rojas, E., Baltazar, A., Loh, K.: Damage detection using the signal entropy of an ultrasonic sensor network. Smart Mater. Struct. 24(7), 1–11 (2015)CrossRef
24.
go back to reference Thien, B., Puckett, A., Park, G., Farrar, C.: Detecting and locating cracks and corrosion in pipes using ultrasonic guided waves. In: Proceedings of 3rd European structural health monitoring conference, pp. 1045–1053 (2006) Thien, B., Puckett, A., Park, G., Farrar, C.: Detecting and locating cracks and corrosion in pipes using ultrasonic guided waves. In: Proceedings of 3rd European structural health monitoring conference, pp. 1045–1053 (2006)
25.
go back to reference Thien, A.B., Chiamori, H.C., Ching, J.T., Wait, J.R., Park, G.: The use of macro-fibre composites for pipeline structural health assessment. Struct. Health Monitor. 15(1), 43–63 (2008)CrossRef Thien, A.B., Chiamori, H.C., Ching, J.T., Wait, J.R., Park, G.: The use of macro-fibre composites for pipeline structural health assessment. Struct. Health Monitor. 15(1), 43–63 (2008)CrossRef
26.
go back to reference Cui, L., Liu, Y., Kiong, C.: Health monitoring of cylindrical structures using torsional wave generated by piezoelectric macro-fiber composite. In: Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, San Diego (2011) Cui, L., Liu, Y., Kiong, C.: Health monitoring of cylindrical structures using torsional wave generated by piezoelectric macro-fiber composite. In: Proc. SPIE 7984, Health Monitoring of Structural and Biological Systems 2011, San Diego (2011)
27.
go back to reference Park, G., Rutherford, A.C., Wait, J.R., Nadler, B., Farrar, C., Claytor, T.N.: High-frequency response functions for composite plate monitoring with ultrasonic validation. AIAA J. 43, 2431–2437 (2005)CrossRef Park, G., Rutherford, A.C., Wait, J.R., Nadler, B., Farrar, C., Claytor, T.N.: High-frequency response functions for composite plate monitoring with ultrasonic validation. AIAA J. 43, 2431–2437 (2005)CrossRef
28.
go back to reference Benjeddou, A., Al-Ajmi, M.: Analytical homogenizations of piezoceramic d15 shear macro-fibre composites. In: IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials, pp. 229–242 (2011) Benjeddou, A., Al-Ajmi, M.: Analytical homogenizations of piezoceramic d15 shear macro-fibre composites. In: IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials, pp. 229–242 (2011)
29.
go back to reference Kumar, R.: Dispersion of axially symmetric waves in empty and fluid-filled cylindrical shells. Acustica 27(6), 317–329 (1972) Kumar, R.: Dispersion of axially symmetric waves in empty and fluid-filled cylindrical shells. Acustica 27(6), 317–329 (1972)
30.
go back to reference Wooh, S.-C., Veroy, K.: Spectrotemporal analysis of guided-wave pulse-echo signals: part 1. Dispersive systems. Exp. Mech. 41, 324–331 (2001)CrossRef Wooh, S.-C., Veroy, K.: Spectrotemporal analysis of guided-wave pulse-echo signals: part 1. Dispersive systems. Exp. Mech. 41, 324–331 (2001)CrossRef
31.
go back to reference Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, Burlington (2009)MATH Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, Burlington (2009)MATH
33.
go back to reference Patel, H., Mewada, H.: Dictionary properties for sparse representation: implementation and analysis. J. Artif. Intell. 11(1), 1–8 (2018)CrossRef Patel, H., Mewada, H.: Dictionary properties for sparse representation: implementation and analysis. J. Artif. Intell. 11(1), 1–8 (2018)CrossRef
34.
go back to reference Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)CrossRef Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)CrossRef
35.
go back to reference Zhang, G.M., Zhang, C.Z., Harvey, D.M.: Sparse signal representation and its applications in ultrasonic NDE. Ultrasonics 52(3), 351–363 (2012)CrossRef Zhang, G.M., Zhang, C.Z., Harvey, D.M.: Sparse signal representation and its applications in ultrasonic NDE. Ultrasonics 52(3), 351–363 (2012)CrossRef
36.
go back to reference IEEE, Standard on Piezolectricity, ANSI/IEEE, Std. 176 (1987) IEEE, Standard on Piezolectricity, ANSI/IEEE, Std. 176 (1987)
37.
go back to reference Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11, 246–258 (2001)CrossRef Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11, 246–258 (2001)CrossRef
39.
go back to reference Graff, K.F.: Wave motion in elastic solids. Dover Publications Inc, New York (1975)MATH Graff, K.F.: Wave motion in elastic solids. Dover Publications Inc, New York (1975)MATH
40.
go back to reference Manka, M.R.A.M.M., Stepinski, T., Uhl, T.: Lamb wave transducer made of piezoelectric macro-fiber composite. Struct. Control Health Monitor. 20, 1138–1158 (2013)CrossRef Manka, M.R.A.M.M., Stepinski, T., Uhl, T.: Lamb wave transducer made of piezoelectric macro-fiber composite. Struct. Control Health Monitor. 20, 1138–1158 (2013)CrossRef
41.
go back to reference Rose, J.L.: Ultrasonic Waves in Solid Media, 1st edn. Cambridge University Press, Cambridge (1999) Rose, J.L.: Ultrasonic Waves in Solid Media, 1st edn. Cambridge University Press, Cambridge (1999)
42.
go back to reference Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)MathSciNetMATHCrossRef Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)MathSciNetMATHCrossRef
Metadata
Title
Detection of torsional guided wave generation using macro-fiber composite transducers and basis pursuit denoising
Authors
K. Fernandez
E. Rojas
A. Baltazar
R. Mijarez
Publication date
07-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 5/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01863-4

Other articles of this Issue 5/2021

Archive of Applied Mechanics 5/2021 Go to the issue

Premium Partners