Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2018

31-01-2018

Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method

Authors: Recep Gümrük, R. A. W. Mines, Sami Karadeniz

Published in: Journal of Materials Engineering and Performance | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Micro-lattice structures manufactured using the selective laser melting (SLM) process provides the opportunity to realize optimal cellular materials for impact energy absorption. In this paper, strain rate-dependent material properties are measured for stainless steel 316L SLM micro-lattice struts in the strain rate range of 10−3 to 6000 s−1. At high strain rates, a novel version of the split Hopkinson Bar has been developed. Strain rate-dependent materials data have been used in Cowper–Symonds material model, and the scope and limit of this model in the context of SLM struts have been discussed. Strain rate material data and the Cowper–Symonds model have been applied to the finite element analysis of a micro-lattice block subjected to drop weight impact loading. The model output has been compared to experimental results, and it has been shown that the increase in crush stress due to impact loading is mainly the result of strain rate material behavior. Hence, a systematic methodology has been developed to investigate the impact energy absorption of a micro-lattice structure manufactured using additive layer manufacture (SLM). This methodology can be extended to other micro-lattice materials and configurations, and to other impact conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Shen, S. McKown, S. Tsopanos, S.C. Sutcliffe, R.A.W. Mines, and W.J. Cantwell, The Mechanical Properties of Sandwich Structures Based on Metal Lattice Architectures, J. Sandw. Struct. Mater., 2009, 12(2), p 159–180CrossRef Y. Shen, S. McKown, S. Tsopanos, S.C. Sutcliffe, R.A.W. Mines, and W.J. Cantwell, The Mechanical Properties of Sandwich Structures Based on Metal Lattice Architectures, J. Sandw. Struct. Mater., 2009, 12(2), p 159–180CrossRef
2.
go back to reference S. Tsopanos, R.A.W. Mines, S. McKown, Y. Shen, W. Cantwell, W. Brooks, and C.J. Sutcliffe, The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Micro-Lattice Structures, J. Manuf. Sci. E-T ASME, 2010, 132(4), p 41011CrossRef S. Tsopanos, R.A.W. Mines, S. McKown, Y. Shen, W. Cantwell, W. Brooks, and C.J. Sutcliffe, The Influence of Processing Parameters on the Mechanical Properties of Selectively Laser Melted Stainless Steel Micro-Lattice Structures, J. Manuf. Sci. E-T ASME, 2010, 132(4), p 41011CrossRef
3.
go back to reference R. Gümrük and R.A.W. Mines, Compressive Behavior of Stainless Steel Micro-Lattice Structures, Int. J. Mech. Sci., 2013, 68, p 125–139CrossRef R. Gümrük and R.A.W. Mines, Compressive Behavior of Stainless Steel Micro-Lattice Structures, Int. J. Mech. Sci., 2013, 68, p 125–139CrossRef
4.
go back to reference R. Gümrük, R.A.W. Mines, and S. Karadeniz, Static Mechanical Behaviors of Stainless Steel Micro Lattice Structures Under Different Loading Conditions, Mater. Sci. Eng. A, 2013, 586, p 392–406CrossRef R. Gümrük, R.A.W. Mines, and S. Karadeniz, Static Mechanical Behaviors of Stainless Steel Micro Lattice Structures Under Different Loading Conditions, Mater. Sci. Eng. A, 2013, 586, p 392–406CrossRef
5.
go back to reference S. McKown, Y. Shen, W.K. Brookes, C.J. Sutcliffe, W.J. Cantwell, G.S. Langdon, G.N. Nurick, and M.D. Theobald, The Quasi-static and Blast Loading Response of Lattice Structures, Int. J. Impact Eng., 2008, 35, p 795–810CrossRef S. McKown, Y. Shen, W.K. Brookes, C.J. Sutcliffe, W.J. Cantwell, G.S. Langdon, G.N. Nurick, and M.D. Theobald, The Quasi-static and Blast Loading Response of Lattice Structures, Int. J. Impact Eng., 2008, 35, p 795–810CrossRef
6.
go back to reference M. Smith, W.J. Cantwell, Z. Guan, S. Tsopanos, M.D. Theobald, G.N. Nurick, and G.S. Langdon, The Quasi-static and Blast Response of Steel Lattice Structures, J. Sandw. Struct. Mater., 2011, 13(4), p 479–501CrossRef M. Smith, W.J. Cantwell, Z. Guan, S. Tsopanos, M.D. Theobald, G.N. Nurick, and G.S. Langdon, The Quasi-static and Blast Response of Steel Lattice Structures, J. Sandw. Struct. Mater., 2011, 13(4), p 479–501CrossRef
7.
go back to reference G.N. Labeas and M.M. Sunaric, Investigation on the Static Response and Failure Process of Metallic Open Lattice Cellular Structures, Strain, 2008, 46, p 195–204CrossRef G.N. Labeas and M.M. Sunaric, Investigation on the Static Response and Failure Process of Metallic Open Lattice Cellular Structures, Strain, 2008, 46, p 195–204CrossRef
8.
go back to reference K. Ushijima, W.J. Cantwell, R.A.W. Mines, S. Tsopanos, and M. Smith, An Investigation into the Compressive Properties of Stainless Steel Micro-Lattice Structures, J. Sandw. Struct. Mater., 2011, 13(3), p 303–329CrossRef K. Ushijima, W.J. Cantwell, R.A.W. Mines, S. Tsopanos, and M. Smith, An Investigation into the Compressive Properties of Stainless Steel Micro-Lattice Structures, J. Sandw. Struct. Mater., 2011, 13(3), p 303–329CrossRef
9.
go back to reference S. Lee, F. Barthelat, J.W. Hutchinson, and H.D. Espinosa, Dynamic Failure of Metallic Pyramidal Truss Core Materials—Experiment and Modeling, Int. J. Plast., 2006, 22, p 2118–2145CrossRef S. Lee, F. Barthelat, J.W. Hutchinson, and H.D. Espinosa, Dynamic Failure of Metallic Pyramidal Truss Core Materials—Experiment and Modeling, Int. J. Plast., 2006, 22, p 2118–2145CrossRef
10.
go back to reference S. Lee, F. Barthelat, N. Moldovan, H.D. Espinosa, and H.N.G. Wadley, Deformation Rate Effects on Failure Modes of Open Cell Al Foams and Textile Materials, Int. J. Sol. Struct., 2006, 43, p 53–73CrossRef S. Lee, F. Barthelat, N. Moldovan, H.D. Espinosa, and H.N.G. Wadley, Deformation Rate Effects on Failure Modes of Open Cell Al Foams and Textile Materials, Int. J. Sol. Struct., 2006, 43, p 53–73CrossRef
11.
go back to reference A.G. Evans, M.Y. He, V.S. Deshpande, J.W. Hutchinson, A.J. Jacobsen, and W.B. Carter, Concepts for Enhanced Energy Absorption Using Hollow Micro Lattices, Int. J. Imp. Eng., 2010, 37, p 947–959CrossRef A.G. Evans, M.Y. He, V.S. Deshpande, J.W. Hutchinson, A.J. Jacobsen, and W.B. Carter, Concepts for Enhanced Energy Absorption Using Hollow Micro Lattices, Int. J. Imp. Eng., 2010, 37, p 947–959CrossRef
12.
go back to reference T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter, Ultralight Metallic Micro Lattices, Science, 2011, 334, p 962–965CrossRef T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter, Ultralight Metallic Micro Lattices, Science, 2011, 334, p 962–965CrossRef
13.
go back to reference D.N. Fang, Y.L. Li, and H. Zhao, On the Behavior Characterization of Metallic Cellular Materials under Impact Loading, Acta Mech. Sin., 2010, 26, p 837–846CrossRef D.N. Fang, Y.L. Li, and H. Zhao, On the Behavior Characterization of Metallic Cellular Materials under Impact Loading, Acta Mech. Sin., 2010, 26, p 837–846CrossRef
14.
go back to reference M.Z. Mahmoudabadi and M. Sadighi, A Theoretical and Experimental Study on Metal Hexagonal Honeycomb Crushing under Quasi Static and Low Velocity Impact Loading, Mater. Sci. Eng. A, 2011, 528, p 4958–4966CrossRef M.Z. Mahmoudabadi and M. Sadighi, A Theoretical and Experimental Study on Metal Hexagonal Honeycomb Crushing under Quasi Static and Low Velocity Impact Loading, Mater. Sci. Eng. A, 2011, 528, p 4958–4966CrossRef
15.
go back to reference T.A. Schaedler, C.J. Ro, A.E. Sorensen, S.S. Yang, W.B. Carter, and A.J. Jacobsen, Designing Metallic Micro Lattices for Energy Absorber, Adv. Eng. Mater., 2014, 16(1), p 276–283CrossRef T.A. Schaedler, C.J. Ro, A.E. Sorensen, S.S. Yang, W.B. Carter, and A.J. Jacobsen, Designing Metallic Micro Lattices for Energy Absorber, Adv. Eng. Mater., 2014, 16(1), p 276–283CrossRef
16.
go back to reference Y. Liu, T.A. Schaedler, and X. Chen, Dynamic Energy Absorption Characteristics of Hollow Micro Lattice Structures, Mech. Mater., 2014, 77, p 1–13CrossRef Y. Liu, T.A. Schaedler, and X. Chen, Dynamic Energy Absorption Characteristics of Hollow Micro Lattice Structures, Mech. Mater., 2014, 77, p 1–13CrossRef
17.
go back to reference Z. Ozdemir, E. Hernandez-Nava, A. Tyas, J.A. Warren, S.D. Fay, R. Goodall, L. Toddy, and H. Askes, Energy Absorption in Lattice Structures in Dynamics: Experiments, Int. J. Imp. Eng., 2016, 89, p 49–61CrossRef Z. Ozdemir, E. Hernandez-Nava, A. Tyas, J.A. Warren, S.D. Fay, R. Goodall, L. Toddy, and H. Askes, Energy Absorption in Lattice Structures in Dynamics: Experiments, Int. J. Imp. Eng., 2016, 89, p 49–61CrossRef
18.
go back to reference R.A.W. Mines, S. Tsopanos, Y. Shen, R. Hasan, and S.T. McKown, Drop Weight Impact Behavior of Sandwich Panels with Metallic Micro Lattice Cores, Int. J. Imp. Eng., 2013, 60, p 120–132CrossRef R.A.W. Mines, S. Tsopanos, Y. Shen, R. Hasan, and S.T. McKown, Drop Weight Impact Behavior of Sandwich Panels with Metallic Micro Lattice Cores, Int. J. Imp. Eng., 2013, 60, p 120–132CrossRef
19.
go back to reference I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, and R.D. Wildman, A Mechanical Property Evaluation of Graded Density Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 670, p 264–274CrossRef I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, and R.D. Wildman, A Mechanical Property Evaluation of Graded Density Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 670, p 264–274CrossRef
20.
go back to reference E. Abele, H.A. Stoffregen, K. Klimkeit, H. Hoche, and M. Oeshsner, Optimisation of Process Parameters for Lattice Structures, Rapid Prototyp. J., 2015, 21(1), p 117–127CrossRef E. Abele, H.A. Stoffregen, K. Klimkeit, H. Hoche, and M. Oeshsner, Optimisation of Process Parameters for Lattice Structures, Rapid Prototyp. J., 2015, 21(1), p 117–127CrossRef
21.
go back to reference M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing, J. O. M., 2016, 68(3), p 747–764 M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing, J. O. M., 2016, 68(3), p 747–764
22.
go back to reference J. Bűltmann, S. Merkt, C. Hammer, C. Hinke, and P. Ulrich, Scalability of the Mechanical Properties of Selective Laser Melting Produced Micro Struts, J. Laser Appl., 2015, 27(S2), S29206, p 1–7. J. Bűltmann, S. Merkt, C. Hammer, C. Hinke, and P. Ulrich, Scalability of the Mechanical Properties of Selective Laser Melting Produced Micro Struts, J. Laser Appl., 2015, 27(S2), S29206, p 1–7.
23.
go back to reference J.W. Hutchinson, Plasticity at the Micron Scale, Int. J. Sol. Struct., 2000, 37, p 225–238CrossRef J.W. Hutchinson, Plasticity at the Micron Scale, Int. J. Sol. Struct., 2000, 37, p 225–238CrossRef
24.
go back to reference Y. Shen, High Performance Sandwich Structures Based on Novel Metal Cores, Ph.D. University of Liverpool, UK, 2009 Y. Shen, High Performance Sandwich Structures Based on Novel Metal Cores, Ph.D. University of Liverpool, UK, 2009
25.
go back to reference R. Hasan, Progressive Collapse of Titanium Alloy Micro Lattice Structures Manufactured Using Selective Laser Melting, Ph.D. Thesis, University of Liverpool, UK, 2013 R. Hasan, Progressive Collapse of Titanium Alloy Micro Lattice Structures Manufactured Using Selective Laser Melting, Ph.D. Thesis, University of Liverpool, UK, 2013
26.
go back to reference Cambridge Engineering Selector, Properties: Stainless Steel Austenitic AISI 316L Wrought, Cold Annealed, Accessed, 2012 Cambridge Engineering Selector, Properties: Stainless Steel Austenitic AISI 316L Wrought, Cold Annealed, Accessed, 2012
27.
28.
go back to reference Y. Shen, W. Cantwell, R. Mines, and Y. Li, Low Velocity Impact Performance of Lattice Structure Core Based Sandwich Panels, J. Comp. Mater., 2014, 48(25), p 3153–3167CrossRef Y. Shen, W. Cantwell, R. Mines, and Y. Li, Low Velocity Impact Performance of Lattice Structure Core Based Sandwich Panels, J. Comp. Mater., 2014, 48(25), p 3153–3167CrossRef
29.
go back to reference I. Ullah, M. Brandt, and S. Feih, Failure and Energy Absorption Characteristics of Advanced 3D Truss Core Structures, Mater. Des., 2016, 92, p 937–948CrossRef I. Ullah, M. Brandt, and S. Feih, Failure and Energy Absorption Characteristics of Advanced 3D Truss Core Structures, Mater. Des., 2016, 92, p 937–948CrossRef
30.
go back to reference G.S. Langdon and G.K. Schleyer, Unusual Strain Rate Sensitive Behavior of AISI, 316L Austenitic Stainless Steel, J. Strain Anal., 2004, 39(1), p 71–86CrossRef G.S. Langdon and G.K. Schleyer, Unusual Strain Rate Sensitive Behavior of AISI, 316L Austenitic Stainless Steel, J. Strain Anal., 2004, 39(1), p 71–86CrossRef
31.
32.
go back to reference H. Huh, W.J. Kang, and S.S. Han, A Tension Split Hopkinson Bar for Investigating the Dynamic Behavior of Sheet Metals, Exp. Mech., 2002, 42(1), p 8–17CrossRef H. Huh, W.J. Kang, and S.S. Han, A Tension Split Hopkinson Bar for Investigating the Dynamic Behavior of Sheet Metals, Exp. Mech., 2002, 42(1), p 8–17CrossRef
33.
go back to reference L.Y. Li and T.C.K. Molyneaux, Dynamic Constitutive Equations and Behavior of Brass at High Strain Rates, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 1995, 209, p 287–293CrossRef L.Y. Li and T.C.K. Molyneaux, Dynamic Constitutive Equations and Behavior of Brass at High Strain Rates, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 1995, 209, p 287–293CrossRef
34.
go back to reference O.S. Lee and G.H. Kim, Thickness Effects on Mechanical Behavior of a Composite Material (1001P) and Polycarbonate in Split Hopkinson Pressure Bar Technique, J. Mater. Sci. Lett., 2000, 19, p 1805–1808CrossRef O.S. Lee and G.H. Kim, Thickness Effects on Mechanical Behavior of a Composite Material (1001P) and Polycarbonate in Split Hopkinson Pressure Bar Technique, J. Mater. Sci. Lett., 2000, 19, p 1805–1808CrossRef
35.
go back to reference P.S. Follansbee, The Hopkinson Bar, in Metals Handbook, 9th ed., Mechanical Testing, vol. 8, American Society for Metals, 1985, p 198–203 P.S. Follansbee, The Hopkinson Bar, in Metals Handbook, 9th ed., Mechanical Testing, vol. 8, American Society for Metals, 1985, p 198–203
36.
go back to reference N. Jones, Structural Impact, 2nd ed., Cambridge University Press, Cambridge, 2012 N. Jones, Structural Impact, 2nd ed., Cambridge University Press, Cambridge, 2012
37.
go back to reference M. Alves, Material Constitutive Law for Large Strains and Strain Rates, J. Eng. Mech., 2000, 126, p 215–218CrossRef M. Alves, Material Constitutive Law for Large Strains and Strain Rates, J. Eng. Mech., 2000, 126, p 215–218CrossRef
38.
go back to reference M. Sasso, G. Newaz, and D. Amodio, Material Characterization at High Strain Rate Hopkinson Bar Tests and Finite Element Optimization, Mater. Sci. Eng. A, 2008, 487, p 289–300CrossRef M. Sasso, G. Newaz, and D. Amodio, Material Characterization at High Strain Rate Hopkinson Bar Tests and Finite Element Optimization, Mater. Sci. Eng. A, 2008, 487, p 289–300CrossRef
39.
go back to reference M. Smith, Z. Guan, and W.J. Cantwell, Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using Selective Laser Melting, Int. J. Mech. Sci., 2013, 67, p 28–41CrossRef M. Smith, Z. Guan, and W.J. Cantwell, Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using Selective Laser Melting, Int. J. Mech. Sci., 2013, 67, p 28–41CrossRef
40.
go back to reference P. Li, N. Petrinic, and C.R. Siviour, Baseline Metal and CM Core Properties: Micro Lattice Structure, Deliverable: 3-1-1b Report, CELPACT (Cellular Materials for Impact Performance), 2009 P. Li, N. Petrinic, and C.R. Siviour, Baseline Metal and CM Core Properties: Micro Lattice Structure, Deliverable: 3-1-1b Report, CELPACT (Cellular Materials for Impact Performance), 2009
41.
go back to reference T. Tancogne-Dejean, A.B. Spierings, and D. Mohr, Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading, Acta. Mater., 2016, 116, p 14–28CrossRef T. Tancogne-Dejean, A.B. Spierings, and D. Mohr, Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading, Acta. Mater., 2016, 116, p 14–28CrossRef
42.
43.
go back to reference B. Burgan, Elevated Temperature and High Strain Rate Properties of Offshore Steels, Steel Construction Institute, Offshore Technology Report 2001/020, 2001 B. Burgan, Elevated Temperature and High Strain Rate Properties of Offshore Steels, Steel Construction Institute, Offshore Technology Report 2001/020, 2001
Metadata
Title
Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method
Authors
Recep Gümrük
R. A. W. Mines
Sami Karadeniz
Publication date
31-01-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3208-y

Other articles of this Issue 3/2018

Journal of Materials Engineering and Performance 3/2018 Go to the issue

Premium Partners