Skip to main content
Top
Published in: Polymer Science, Series D 3/2023

01-09-2023

Determination of Temperature–Time Intervals for the Formation of Carbon Mesophase for Some Types of Coking Feedstock

Authors: K. A. Shubin, A. L. Abaturov, D. M. Kisel’kov

Published in: Polymer Science, Series D | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article presents data on the duration of exposure required to start the formation of anisotropic components distinguishable by optical microscopy during isothermal exposure of several types of residual hydrocarbon mixtures used as coking feedstock. In the considered range of temperatures and exposure durations, no significant differences were found in the periods of formation of anisotropic components.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. I. Kostikov, V. M. Samoilov, N. Yu. Beilina, and B. G. Ostronov, “New high-strength carbon materials for traditional technologies,” Ross. Khim. Zh. 158, 64 (2004). V. I. Kostikov, V. M. Samoilov, N. Yu. Beilina, and B. G. Ostronov, “New high-strength carbon materials for traditional technologies,” Ross. Khim. Zh. 158, 64 (2004).
2.
go back to reference R. H. Knibbs, “Fracture in polycrystalline graphite,” J. Nucl. Mat. 24, 174–187 (1967).CrossRef R. H. Knibbs, “Fracture in polycrystalline graphite,” J. Nucl. Mat. 24, 174–187 (1967).CrossRef
3.
go back to reference N. N. Shipkov et al., “Influence of the structure and properties of coke on the properties of structural graphite,” Khim. Tekhnol. Topliv Masel 3, 59—61 (1980). N. N. Shipkov et al., “Influence of the structure and properties of coke on the properties of structural graphite,” Khim. Tekhnol. Topliv Masel 3, 59—61 (1980).
4.
go back to reference J. D. Brooks and G. H. Taylor, “The formation of graphitizing carbons from the liquid phase,” Carbon 3, 185–193 (1965).CrossRef J. D. Brooks and G. H. Taylor, “The formation of graphitizing carbons from the liquid phase,” Carbon 3, 185–193 (1965).CrossRef
5.
go back to reference S. Mochida, Y. Q. Fei, T. Oyama, Y. Korai, and H. Fujitsu, “Carbonization of coal-tar pitch into lump needle coke in a tube bomb,” J. Mater. Sci. 22, 3989–3994 (1987).CrossRef S. Mochida, Y. Q. Fei, T. Oyama, Y. Korai, and H. Fujitsu, “Carbonization of coal-tar pitch into lump needle coke in a tube bomb,” J. Mater. Sci. 22, 3989–3994 (1987).CrossRef
6.
go back to reference I. Mochida, T. Oyama, and Y. Korai, “Formation scheme of needle coke from FCC-decant oil,” Carbon 26, 49–55 (1988).CrossRef I. Mochida, T. Oyama, and Y. Korai, “Formation scheme of needle coke from FCC-decant oil,” Carbon 26, 49–55 (1988).CrossRef
7.
go back to reference I. Mochida, T. Oyama, Y. Korai, and Y. Q. Fei, “Study of carbonization using a tube bomb: evaluation of lump needle coke, carbonization mechanism and optimization,” Fuel 67, 1171–1181 (1988).CrossRef I. Mochida, T. Oyama, Y. Korai, and Y. Q. Fei, “Study of carbonization using a tube bomb: evaluation of lump needle coke, carbonization mechanism and optimization,” Fuel 67, 1171–1181 (1988).CrossRef
8.
go back to reference I. Mochida, T. Oyama, Y. Q. Fei, T. Furuno, and Y. Korai, “Optimization of carbonization conditions for needle coke production from a low-sulphur petroleum vacuum residue,” J. Mater. Sci. 23, 298–304 (1988).CrossRef I. Mochida, T. Oyama, Y. Q. Fei, T. Furuno, and Y. Korai, “Optimization of carbonization conditions for needle coke production from a low-sulphur petroleum vacuum residue,” J. Mater. Sci. 23, 298–304 (1988).CrossRef
9.
go back to reference I. Mochida, T. Oyama, and Y. Korai, “Improvements to needle-coke quality by pressure reductions from a tube reactor,” Carbon 26, 57–60 (1988).CrossRef I. Mochida, T. Oyama, and Y. Korai, “Improvements to needle-coke quality by pressure reductions from a tube reactor,” Carbon 26, 57–60 (1988).CrossRef
10.
go back to reference I. Mochida, Y. Korai, T. Oyama, Y. Nesumi, and Y. Todo, “Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC-decant oil into better needle coke,” Carbon 27, 359–365 (1989).CrossRef I. Mochida, Y. Korai, T. Oyama, Y. Nesumi, and Y. Todo, “Carbonization in the tube bomb leading to needle coke: I. Cocarbonization of a petroleum vacuum residue and a FCC-decant oil into better needle coke,” Carbon 27, 359–365 (1989).CrossRef
11.
go back to reference Y. Nesumi, Y. Todo, T. Oyama, I. Mochida, and Y. Korai, “Carbonization in the tube bomb leading to needle coke: II. Mechanism of cocarbonization of a petroleum vacuum residue and a FCC-decant oil,” Carbon 27, 367–373 (1989).CrossRef Y. Nesumi, Y. Todo, T. Oyama, I. Mochida, and Y. Korai, “Carbonization in the tube bomb leading to needle coke: II. Mechanism of cocarbonization of a petroleum vacuum residue and a FCC-decant oil,” Carbon 27, 367–373 (1989).CrossRef
12.
go back to reference I. Mochida, Y. Q. Fei, Y. Korai, K. Fujimoto, and R. Yamashita, “Carbonization in the tube bomb leading to needle coke: III. Carbonization properties of several coal-tar pitches,” Carbon 27, 375–380 (1989).CrossRef I. Mochida, Y. Q. Fei, Y. Korai, K. Fujimoto, and R. Yamashita, “Carbonization in the tube bomb leading to needle coke: III. Carbonization properties of several coal-tar pitches,” Carbon 27, 375–380 (1989).CrossRef
13.
go back to reference I. Mochida, Y. Q. Fei, and Y. Korai, “A study of the carbonization of ethylene tar pitch and needle coke formation,” Fuel 69, 667–671 (1990).CrossRef I. Mochida, Y. Q. Fei, and Y. Korai, “A study of the carbonization of ethylene tar pitch and needle coke formation,” Fuel 69, 667–671 (1990).CrossRef
14.
go back to reference I. Mochida, Y. Q. Fei, Y. Korai, and T. Oishi, “Co-carbonization of ethylene tar pitch and coal tar pitch to form needle coke,” Fuel 69, 672–677 (1990).CrossRef I. Mochida, Y. Q. Fei, Y. Korai, and T. Oishi, “Co-carbonization of ethylene tar pitch and coal tar pitch to form needle coke,” Fuel 69, 672–677 (1990).CrossRef
15.
go back to reference A. L. Abaturov et al., “Production of isotropic coke from shale feedstock: Characterization analysis of isotropic cokes from thermally oxidized residue of shale tar distillation,” Koks Khim., No. 1, 8–15 (2019). A. L. Abaturov et al., “Production of isotropic coke from shale feedstock: Characterization analysis of isotropic cokes from thermally oxidized residue of shale tar distillation,” Koks Khim., No. 1, 8–15 (2019).
16.
go back to reference A. L. Abaturov et al., “Obtaining isotropic coke from shale raw materials: Study of structural and group compositions of products of thermal oxidation of shale tar distillation residues,” Koks Khim., No. 12, 32–41 (2018). A. L. Abaturov et al., “Obtaining isotropic coke from shale raw materials: Study of structural and group compositions of products of thermal oxidation of shale tar distillation residues,” Koks Khim., No. 12, 32–41 (2018).
17.
go back to reference A. L. Abaturov et al., “Obtaining isotropic coke from shale raw materials: Study of the microstructure of cokes from the thermally oxidized residue of shale tar distillation,” Koks Khim., No. 11, 15–28 (2018). A. L. Abaturov et al., “Obtaining isotropic coke from shale raw materials: Study of the microstructure of cokes from the thermally oxidized residue of shale tar distillation,” Koks Khim., No. 11, 15–28 (2018).
Metadata
Title
Determination of Temperature–Time Intervals for the Formation of Carbon Mesophase for Some Types of Coking Feedstock
Authors
K. A. Shubin
A. L. Abaturov
D. M. Kisel’kov
Publication date
01-09-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 3/2023
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421223030371

Other articles of this Issue 3/2023

Polymer Science, Series D 3/2023 Go to the issue

Premium Partners