Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

27-02-2021

Developing Optimal Spectrum Sharing Protocol and Optimal Linear Precoding for Multi-Carrier Code-Division Multiple Access Using Massive Multiple Input Multiple Output in 5G Wireless Networks

Authors: A. Vijay, K. Umadevi

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Currently, wireless systems are moving towards implementing fifth-generation (5G) wireless networks to compensate for intense growth and surpass demands concerning future wireless services. Consequently, massive multiple-input multiple-output (mMIMO) and multi-carrier code-division multiple access (MC-CDMA) have received considerable attention for addressing the prevailing constraints in developing 5G mobile networks. To meet requirements related to future wireless services such as achieving elevated data rates, avoiding multi-user co-channel interference (CCI), and satisfying other network limitations, implementing MC-CDMA with mMIMO has become mandatory. In this study, a detailed literature review is conducted on research for implementing MC-CDMA and mMIMO, and it is determined that the utilised methods fail to effectively solve previous issues. Thus, this paper proposes combining an optimal spectrum sharing (OSS) protocol and optimal linear precoding (OLP) with MC-CDMA and mMIMO. The OSS protocol provides an optimal allocation of power with improved quality of service. It is utilised to provide resource allocation with energy efficiency and high spectrum efficiency. Additionally, implementing OLP maximises the system capacity of MC-CDMA-based mMIMO wireless networks. Further, the performance of OLP is improved by introducing the salp swarm algorithm, which helps in finding the optimal precoding vector for the respective system. The proposed methods were employed in MATLAB for analysing system parameters, including the bit error rate (BER), signal-to-noise ratio, and system capacity. Moreover, the proposed work is contrasted with existing methods based on zero-forcing (ZF), regularised ZF (RZF), space–time RZF, minimum mean square error, and a relay precoder.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mahda, N., & Nordin, R. (2016). A survey on interference management for device-to-device (D2D) communication and its challenges in 5G networks. Journal of Network & Computer Applications, 71, 130–150.CrossRef Mahda, N., & Nordin, R. (2016). A survey on interference management for device-to-device (D2D) communication and its challenges in 5G networks. Journal of Network & Computer Applications, 71, 130–150.CrossRef
2.
go back to reference Hashim, M. F., & Razak, N. I. A. (2019). Ultra-dense networks: Integration with device to device (D2D) communication. Wireless Personal Communications, 106(2), 911–925.CrossRef Hashim, M. F., & Razak, N. I. A. (2019). Ultra-dense networks: Integration with device to device (D2D) communication. Wireless Personal Communications, 106(2), 911–925.CrossRef
3.
go back to reference Popovski, P., Trillingsgaard, K. F., Simeone, O., & Durisi, G. (2018). 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view. IEEE Access, 6(1), 55765–55779.CrossRef Popovski, P., Trillingsgaard, K. F., Simeone, O., & Durisi, G. (2018). 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view. IEEE Access, 6(1), 55765–55779.CrossRef
4.
go back to reference Axel, M., Kammoun, A., Björnson, E., & Debbah, M. (2016). Linear precoding based on polynomial expansion: Reducing complexity in massive MIMO. EURASIP journal on wireless communications & networking, 2016(1), 63.CrossRef Axel, M., Kammoun, A., Björnson, E., & Debbah, M. (2016). Linear precoding based on polynomial expansion: Reducing complexity in massive MIMO. EURASIP journal on wireless communications & networking, 2016(1), 63.CrossRef
5.
go back to reference Sheng, Z., Tuan, H. D., Tam, H. H. M., Nguyen, H. H., & Fang, Y. (2017). (2017) Energy-efficient precoding in multicell networks with full-duplex base stations. EURASIP Journal on Wireless Communications & Networking, 1, 48.CrossRef Sheng, Z., Tuan, H. D., Tam, H. H. M., Nguyen, H. H., & Fang, Y. (2017). (2017) Energy-efficient precoding in multicell networks with full-duplex base stations. EURASIP Journal on Wireless Communications & Networking, 1, 48.CrossRef
13.
go back to reference Hongji, Huang, Song, Y., Yang, Gui, & J. and Adachi, . (2019). Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Transactions on Vehicular Technology, 68(3), 3027–3032.CrossRef Hongji, Huang, Song, Y., Yang, Gui, & J. and Adachi, . (2019). Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Transactions on Vehicular Technology, 68(3), 3027–3032.CrossRef
14.
go back to reference Acheampong, A., Martey, N., & Kumah, D. A. (2019). A comprehensive study of optimal linear pre-coding schemes for a massive Mu-MIMO Downlink System; a Survey. International Journal of Computer (IJC), 32(1), 21–33. Acheampong, A., Martey, N., & Kumah, D. A. (2019). A comprehensive study of optimal linear pre-coding schemes for a massive Mu-MIMO Downlink System; a Survey. International Journal of Computer (IJC), 32(1), 21–33.
15.
go back to reference Hoydis, J., Brink, S. T., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31(2), 160–171.CrossRef Hoydis, J., Brink, S. T., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31(2), 160–171.CrossRef
16.
go back to reference Wagner, S., Couillet, R., & Debbah and Slock, D. T. M. (2012). Large system analysis of linear precoding in MISO Broadcast Channels with Limited Feedback. IEEE Transactions on Information Theory, 58(7), 4509–4537.MathSciNetCrossRef Wagner, S., Couillet, R., & Debbah and Slock, D. T. M. (2012). Large system analysis of linear precoding in MISO Broadcast Channels with Limited Feedback. IEEE Transactions on Information Theory, 58(7), 4509–4537.MathSciNetCrossRef
17.
go back to reference Joham, M., Utschick, W., & Nossek, J. A. (2005). Linear transmit processing in MIMO communications systems. IEEE Transactions on Signal Processing, 53(8), 2700–2712.MathSciNetCrossRef Joham, M., Utschick, W., & Nossek, J. A. (2005). Linear transmit processing in MIMO communications systems. IEEE Transactions on Signal Processing, 53(8), 2700–2712.MathSciNetCrossRef
18.
go back to reference Sadek, A., & Tarighat, and Sayed, A. H. (2007). A leakage-based precoding scheme for downlink multi-user MIMO channels. IEEE Transactions on Wireless Communications, 6(5), 1711–1721.CrossRef Sadek, A., & Tarighat, and Sayed, A. H. (2007). A leakage-based precoding scheme for downlink multi-user MIMO channels. IEEE Transactions on Wireless Communications, 6(5), 1711–1721.CrossRef
19.
go back to reference Bj¨ornson, E. and Jorswieck, E. . (2013). Optimal resource allocation in coordinated multi-cell systems. Foundations and Trends in Communications and Information Theory, 9(2–3), 113–381.CrossRef Bj¨ornson, E. and Jorswieck, E. . (2013). Optimal resource allocation in coordinated multi-cell systems. Foundations and Trends in Communications and Information Theory, 9(2–3), 113–381.CrossRef
21.
go back to reference Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimiser for engineering design problems. Advances in Engineering Software., 114(1), 163–191.CrossRef Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimiser for engineering design problems. Advances in Engineering Software., 114(1), 163–191.CrossRef
22.
go back to reference Lamare, D., Rodrigo. (2013). Massive MIMO systems: Signal processing challenges and research trends. arXiv preprint arXiv:1310.7282. Lamare, D., Rodrigo. (2013). Massive MIMO systems: Signal processing challenges and research trends. arXiv preprint arXiv:1310.7282.
24.
go back to reference Seethaler, A., & Hlawatsch, F. (2005). Detection techniques for MIMO spatial multiplexing systems. Elektrotechnik und Informationstechnik (E&I), 122(3), 91–96.CrossRef Seethaler, A., & Hlawatsch, F. (2005). Detection techniques for MIMO spatial multiplexing systems. Elektrotechnik und Informationstechnik (E&I), 122(3), 91–96.CrossRef
25.
go back to reference Hesketh, T., Li, P., Lamare, R.C.D. and Wales, S. (2013) Multi-Feedback Successive Interference Cancellation with Dynamic Lug-Likelihood-Ratio Based Reliability Ordering. The Tenth International Symposium on Wireless Communication Systems, VDE VERLAG GMBH- Berlin 2013, pp 1-5. Hesketh, T., Li, P., Lamare, R.C.D. and Wales, S. (2013) Multi-Feedback Successive Interference Cancellation with Dynamic Lug-Likelihood-Ratio Based Reliability Ordering. The Tenth International Symposium on Wireless Communication Systems, VDE VERLAG GMBH- Berlin 2013, pp 1-5.
26.
go back to reference Judson, D., Bhaskar, V., & Arun, S. (2019). Space time regularized zero forcing in downlink code division multiple access systems with complementary codes. Wireless Personal Communications, 109(1), 333–347.CrossRef Judson, D., Bhaskar, V., & Arun, S. (2019). Space time regularized zero forcing in downlink code division multiple access systems with complementary codes. Wireless Personal Communications, 109(1), 333–347.CrossRef
27.
go back to reference Mueller, A., Kammoun, A., Björnson, E., & Debbah, M. (2016). Linear precoding based on polynomial expansion: Reducing complexity in massive MIMO. EURASIP Journal on Wireless Communications and Networking, 2016(1), 63.CrossRef Mueller, A., Kammoun, A., Björnson, E., & Debbah, M. (2016). Linear precoding based on polynomial expansion: Reducing complexity in massive MIMO. EURASIP Journal on Wireless Communications and Networking, 2016(1), 63.CrossRef
28.
go back to reference Tan, W., Huang, W., Yang, X., Shi, Z., Liu, W., & Fan, L. (2018). Multiuser precoding scheme and achievable rate analysis for massive MIMO system. EURASIP Journal on Wireless Communications and Networking, 2018(1), 210.CrossRef Tan, W., Huang, W., Yang, X., Shi, Z., Liu, W., & Fan, L. (2018). Multiuser precoding scheme and achievable rate analysis for massive MIMO system. EURASIP Journal on Wireless Communications and Networking, 2018(1), 210.CrossRef
29.
go back to reference Ge, Z., & Haiyan, W. (2017). Linear precoding design for massive MIMO based on the minimum mean square error algorithm. EURASIP Journal on Embedded Systems, 2017(1), 1–6.CrossRef Ge, Z., & Haiyan, W. (2017). Linear precoding design for massive MIMO based on the minimum mean square error algorithm. EURASIP Journal on Embedded Systems, 2017(1), 1–6.CrossRef
30.
go back to reference Maurya, S., Bansal, M., & Trivedi, A. (2019). Joint source and relay precoder design for energy-efficient MIMO-cognitive relay networks. IET Communications, 13(15), 2226–2234.CrossRef Maurya, S., Bansal, M., & Trivedi, A. (2019). Joint source and relay precoder design for energy-efficient MIMO-cognitive relay networks. IET Communications, 13(15), 2226–2234.CrossRef
Metadata
Title
Developing Optimal Spectrum Sharing Protocol and Optimal Linear Precoding for Multi-Carrier Code-Division Multiple Access Using Massive Multiple Input Multiple Output in 5G Wireless Networks
Authors
A. Vijay
K. Umadevi
Publication date
27-02-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08246-0

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue