With the increasingly severe environmental pollution, the concept of environmental protection is constantly deepening on a global scale. To reduce urban carbon emissions and improve air quality, the promotion and development of electric vehicles are of great significance. As the power source of electric vehicles, lithium batteries have the advantages of high specific energy and long cycle life. However, due to the characteristics of being sensitive to temperature changes [
1], lots of battery thermal runaway problems occur under extreme ambient temperatures. Moreover, battery thermal management (BTM) is essential to solving a series of issues, for example, battery heat dissipation in electric vehicles [
2].
At present, the BTM system in electric vehicles is divided into three categories: air cooling, liquid cooling, and phase change cooling [
3]. The air-cooling type has some great abilities of more choices of pipeline layout, high-cost performance, and lower maintenance costs [
4]. However, due to the limited heat dissipation capacity of the air-cooled BTM system, poor cooling uniformity, and low NVH (noise, vibration, and roughness) [
5], its application has been limited. The Phase change material (PCM) BTM system is a reliable cooling technology with the advantages of reliability and safety [
6]. However, the PCM-based BTM system is still in the laboratory research and exploration stage [
7]. PCM-based BTM systems mainly include pure PCM, composite PCM, and hybrid PCM. Chen et al. [
8] review the advantages and disadvantages of PCM-based BTM systems. They got conclusions through research that the thermal conductivity in most of the single PCM-based BTM systems is very low, which would result in a significant amount of thermal energy accumulation in the battery system in an extreme temperature working environment. To improve the thermal conductivity and strengthen the material, carbon materials and metals are optionally added in phase change materials. The hybrid PCM BTM system has better effects on improving the uniformity of battery temperature distribution and reducing battery temperature rise. In addition, the heat dissipation problem of the battery module is studied based on the orthogonal experimental design in the literature [
9]. The application of graphene in energy storage technology and thermal energy transfer have also been studied. Due to the superior cooling performance and more flexible pipeline layout, the liquid cooling method has been widely applied in electric vehicles, such as Tesla Model S and Chevrolet Volt. The thermal management of a cylindrical battery with double profiles is more complicated than a six-sided cylindrical unit. As the increase of power battery density, the thermal energy generated in the cylindrical battery has also increased. The liquid-cooled BTM system has become an essential and applicable solution for lithium battery cooling technology in electric vehicles [
10]. Tesla designed a bellows belt with a double inlet and outlet to control the heat distribution of the 18650 battery [
10]. Zhao et al. [
11] developed and researched a cooling jacket with microchannels to control the temperature distribution of the 18650 battery. They also investigated the effects of channel number, channel size and fluid flow on the temperature profiles of the battery. Rao et al. [
12] used a heat-conducting device with a liquid channel to cool the cylindrical battery. This device could effectively dissipate the heat generated by the battery. Sheng et al. [
13] developed a battery liquid cooling jacket that could satisfy the requirements of the cooling effect for the 21700 lithium-ion battery. They numerically investigated the influence of fluid flow, channel size and cooling medium on the thermal characteristics of the battery. These numerical results had been validated by the experimental results. Tete et al. [
14] devised a cooling solution halfway between direct and indirect cooling, inserting the battery pack into a cylindrical housing and circulating liquid cooling medium around the battery. It can be concluded from the above researches that the combinations of the cooling sleeve and liquid cooling are effective schemes for the geometrical structure and thermal characteristics of the cylindrical batteries. However, relevant researches are still insufficient at present, meanwhile, there is a lack of relevant researches on electrochemical models that can simulate the charging and discharging process of real batteries through combining thermal management system, as well as the researches on the specific effects of various geometric parameters of cooling jackets using scientific optimization methods.
In order to promote the physics-based models in real-time applications, Deng et al. [
15] applied a series of model reduction methods in this study to obtain a reduced order model (ROM) of all-solid-state batteries. Compared with the original PDE-based model, the voltage error of the proposed ROM is smaller. To simplify the evaluation and simulation of the battery performance, Hallaj et al. [
16] developed a one-dimensional mathematical model to simulate the internal temperature curve of cylindrical lithium-ion batteries, and analyzed the effect of simplified batteries. As that the BTM system has a high cooling rate, the sensitivity of the electrochemical reaction of the cylindrical battery to the temperature gradient can be ignored. Al-Zareer et al. [
17] proposed a one-dimensional model to simulate the electrochemical reaction, and a three-dimensional model to simulate the thermal distribution of the battery. Since the purpose of the BTM system is to stabilize the temperature in the proper range, the electrochemical reactions of the battery are used to set up the model for predicting the amount of heat generated accurately.
Aiming to solve the problem of the temperature differences and the uneven distribution of 21700 cylindrical batteries, a new columnar liquid-cooled BTM system cooling sleeve is proposed in this paper. Compared with the traditional cooling sleeve, the batteries are scattered inside the cooling sleeve, and the number of cooling channels is larger. In the process of the study, it is found that the average temperature of the battery core is the highest. Therefore, the diameter of the cooling channel increases in the center position nearest to the adjacent battery cell can improve the heat dissipation effect of the battery. The electrochemical model, which can simulate the actual battery discharge process, is used to simulate the numerical simulation. Aiming at the numerical simulation of BTM cooling system, the cooling performance of cooling jacket in the flow direction of the cooling medium and the size of the cooling channel are analyzed. Thus, the BTM system is optimized by approximate model and multi-objective optimization.