Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 4/2018

07-03-2018

Development of an Austenitization Kinetics Model for 22MnB5 Steel

Authors: M. Di Ciano, N. Field, M. A. Wells, K. J. Daun

Published in: Journal of Materials Engineering and Performance | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a first-order austenitization kinetics model for 22MnB5 steel, commonly used in hot forming die quenching. Model parameters are derived from constant heating rate dilatometry measurements. Vickers hardness measurements made on coupons that were quenched at intermediate stages of the process were used to verify the model, and the Ac1 and Ac3 temperatures inferred from dilatometry are consistent with correlations found in the literature. The austenitization model was extended to consider non-constant heating rates typical of industrial furnaces and again showed reasonable agreement between predictions and measurements. Finally, the model is used to predict latent heat evolution during industrial heating and is shown to be consistent with values inferred from thermocouple measurements of furnace-heated 22MnB5 coupons reported in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P.K. Mallick, Ed., Materials, Design and Manufacturing for Lightweight Vehicles, Elsevier, Amsterdam, 2010 P.K. Mallick, Ed., Materials, Design and Manufacturing for Lightweight Vehicles, Elsevier, Amsterdam, 2010
2.
go back to reference J.N. Rasera, K.J. Daun, C.J. Shi, and M. D’Souza, Direct Contact Heating for Hot Forming Die Quenching, Appl. Therm. Eng., 2016, 98, p 1165–1173CrossRef J.N. Rasera, K.J. Daun, C.J. Shi, and M. D’Souza, Direct Contact Heating for Hot Forming Die Quenching, Appl. Therm. Eng., 2016, 98, p 1165–1173CrossRef
3.
go back to reference V. Ploshikhin, A. Prihodovsky, J. Kaiser, R. Bisping, et al., New Heating Technology for Furnace-Free Press Hardening Process, in Tools and Technologies for Processing Ultra-High Strength Materials, Graz, Austria, 2011 V. Ploshikhin, A. Prihodovsky, J. Kaiser, R. Bisping, et al., New Heating Technology for Furnace-Free Press Hardening Process, in Tools and Technologies for Processing Ultra-High Strength Materials, Graz, Austria, 2011
4.
go back to reference D.P. Datta and A.M. Gokhale, Austenitization Kinetics of Pearlite and Ferrite Aggregates in a Low Carbon Steel Containing 0.15 wt pct C, Metall. Trans. A, 1981, 12A, p 443–450CrossRef D.P. Datta and A.M. Gokhale, Austenitization Kinetics of Pearlite and Ferrite Aggregates in a Low Carbon Steel Containing 0.15 wt pct C, Metall. Trans. A, 1981, 12A, p 443–450CrossRef
5.
go back to reference A. Roosz, Z. Gacsi, and E.G. Fuchs, Isothermal Formation of Austenite in Eutectoid Plain Carbon Steel, Acta Metall., 1983, 31, p 509–517CrossRef A. Roosz, Z. Gacsi, and E.G. Fuchs, Isothermal Formation of Austenite in Eutectoid Plain Carbon Steel, Acta Metall., 1983, 31, p 509–517CrossRef
6.
go back to reference C.G. de Andrés, F.G. Caballero, C. Capdevila, and H.K.D.H. Bhadeshia, Modelling of Kinetics and Dilatometric Behavior of Non-isothermal Pearlite-to-Austenite Transformation in an Eutectoid Steel, Scr. Mater., 1998, 39, p 791–796CrossRef C.G. de Andrés, F.G. Caballero, C. Capdevila, and H.K.D.H. Bhadeshia, Modelling of Kinetics and Dilatometric Behavior of Non-isothermal Pearlite-to-Austenite Transformation in an Eutectoid Steel, Scr. Mater., 1998, 39, p 791–796CrossRef
7.
go back to reference F.G. Caballero, C. Capdevila, and C.G. de Andrés, Influence of Scale Parameters of Pearlite on the Kinetics of Anisothermal Pearlite-to-Austenite Transformation in a Eutectoid Steel, Scr. Mater., 2000, 42, p 1159–1165CrossRef F.G. Caballero, C. Capdevila, and C.G. de Andrés, Influence of Scale Parameters of Pearlite on the Kinetics of Anisothermal Pearlite-to-Austenite Transformation in a Eutectoid Steel, Scr. Mater., 2000, 42, p 1159–1165CrossRef
8.
go back to reference F.G. Caballero, C. Capdevila, and C.G. de Andrés, Modelling of Kinetics and Dilatometric Behaviour of Austenite Formation in a Low-Carbon Steel with a Ferrite Plus Pearlite Initial Microstructure, J. Mater. Sci., 2002, 37, p 3533–3540CrossRef F.G. Caballero, C. Capdevila, and C.G. de Andrés, Modelling of Kinetics and Dilatometric Behaviour of Austenite Formation in a Low-Carbon Steel with a Ferrite Plus Pearlite Initial Microstructure, J. Mater. Sci., 2002, 37, p 3533–3540CrossRef
9.
go back to reference F.G. Caballero, C. Capdevila, and C.G. de Andrés, Analysis of Effect of Alloying Elements on Martensite Start Temperature of Steels, ISIJ Int., 2003, 43, p 726–735CrossRef F.G. Caballero, C. Capdevila, and C.G. de Andrés, Analysis of Effect of Alloying Elements on Martensite Start Temperature of Steels, ISIJ Int., 2003, 43, p 726–735CrossRef
10.
go back to reference S.K. Nath, S. Ray, V.N.S. Mathur, and M.L. Kapoor, Non-isothermal Austenitisation Kinetics and Theoretical Determination of Intercritical Annealing Time for Dual-Phase Steels, ISIJ Int., 1994, 34(2), p 191–197CrossRef S.K. Nath, S. Ray, V.N.S. Mathur, and M.L. Kapoor, Non-isothermal Austenitisation Kinetics and Theoretical Determination of Intercritical Annealing Time for Dual-Phase Steels, ISIJ Int., 1994, 34(2), p 191–197CrossRef
11.
go back to reference C.I. Garcia and A.J. DeArdo, Formation of Austenite in 1.5 pct Mn Steels, Metall. Trans. A, 1981, 12A, p 521–530CrossRef C.I. Garcia and A.J. DeArdo, Formation of Austenite in 1.5 pct Mn Steels, Metall. Trans. A, 1981, 12A, p 521–530CrossRef
12.
go back to reference J.J. Yi, I.S. Kim, and H.S. Choi, Austenitization During Intercritical Annealing of an Fe–C–Si–Mn Dual-Phase Steel, Metall. Trans. A, 1985, 16A, p 1237–1245CrossRef J.J. Yi, I.S. Kim, and H.S. Choi, Austenitization During Intercritical Annealing of an Fe–C–Si–Mn Dual-Phase Steel, Metall. Trans. A, 1985, 16A, p 1237–1245CrossRef
13.
go back to reference G.R. Speich, V.A. Demarest, and R.L. Miller, Formation of Austenite During Intercritical Annealing of Dual-Phase Steels, Metall. Trans. A, 1981, 12A, p 1419–1428CrossRef G.R. Speich, V.A. Demarest, and R.L. Miller, Formation of Austenite During Intercritical Annealing of Dual-Phase Steels, Metall. Trans. A, 1981, 12A, p 1419–1428CrossRef
14.
go back to reference J. Huang, W.J. Poole, and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Trans. A, 2004, 35A, p 3363–3375CrossRef J. Huang, W.J. Poole, and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Trans. A, 2004, 35A, p 3363–3375CrossRef
15.
go back to reference M. Kulakov, W.J. Poole, and M. Militzer, The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel, Metall. Trans. A, 2013, 44A, p 3564–3576CrossRef M. Kulakov, W.J. Poole, and M. Militzer, The Effect of the Initial Microstructure on Recrystallization and Austenite Formation in a DP600 Steel, Metall. Trans. A, 2013, 44A, p 3564–3576CrossRef
16.
go back to reference M. Kulakov, W.J. Poole, and M. Militzer, A Microstructure Evolution Model for Intercritical Annealing of a Low-Carbon Dual-Phase Steel, ISIJ Int., 2014, 54, p 2627–2636CrossRef M. Kulakov, W.J. Poole, and M. Militzer, A Microstructure Evolution Model for Intercritical Annealing of a Low-Carbon Dual-Phase Steel, ISIJ Int., 2014, 54, p 2627–2636CrossRef
17.
go back to reference H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29, p 1702–1706CrossRef H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29, p 1702–1706CrossRef
18.
go back to reference N. Li, J. Lin, D.S. Balint, and T.A. Dean, Experimental Characterization of the Effects If Thermal Conditions on Austenite Formation for Hot Stamping of Boron Steel, J. Mater. Process. Technol., 2016, 231, p 254–264CrossRef N. Li, J. Lin, D.S. Balint, and T.A. Dean, Experimental Characterization of the Effects If Thermal Conditions on Austenite Formation for Hot Stamping of Boron Steel, J. Mater. Process. Technol., 2016, 231, p 254–264CrossRef
19.
go back to reference N. Li, J. Lin, D.S. Balint, and T.A. Dean, Modeling of Austenite Formation During Heating in Boron Steel Hot Stamping Processes, J. Mater. Process. Technol., 2016, 237, p 394–401CrossRef N. Li, J. Lin, D.S. Balint, and T.A. Dean, Modeling of Austenite Formation During Heating in Boron Steel Hot Stamping Processes, J. Mater. Process. Technol., 2016, 237, p 394–401CrossRef
20.
go back to reference A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature, 1964, 201, p 68–69CrossRef A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature, 1964, 201, p 68–69CrossRef
21.
go back to reference A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data. II, J. Polym. Sci. Part B Polym. Lett., 1965, 3, p 917–920CrossRef A.W. Coats and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data. II, J. Polym. Sci. Part B Polym. Lett., 1965, 3, p 917–920CrossRef
22.
go back to reference ASTM Standard E1097-12(2012), ASTM International, West Conshohocken, PA, 2010 ASTM Standard E1097-12(2012), ASTM International, West Conshohocken, PA, 2010
23.
go back to reference ASTM Standard E1019-11 (2011), ASTM International, West Conshohocken, PA, 2010 ASTM Standard E1019-11 (2011), ASTM International, West Conshohocken, PA, 2010
24.
go back to reference A. Khawam and D.R. Flanagan, Solid-State Kinetic Models: Basics and Mathematical Fundamentals, J. Phys. Chem. B, 2006, 110B, p 17315–17328CrossRef A. Khawam and D.R. Flanagan, Solid-State Kinetic Models: Basics and Mathematical Fundamentals, J. Phys. Chem. B, 2006, 110B, p 17315–17328CrossRef
25.
go back to reference ASTM Standard A1033-10(2015), ASTM International, West Conshohocken, PA, 2010 ASTM Standard A1033-10(2015), ASTM International, West Conshohocken, PA, 2010
26.
go back to reference H.P. Hougardy, Werkstoffkunde Stahl Band 1: Grun, Verlag Stahleisen G.m.b.H., Düsseldorf, 1984, p 229 H.P. Hougardy, Werkstoffkunde Stahl Band 1: Grun, Verlag Stahleisen G.m.b.H., Düsseldorf, 1984, p 229
27.
go back to reference O.G. Kasatkin, B.B. Vinokur, and V.L. Pilyushenko, Computational Models for Determination of the Critical Points of Steel, Metallovedenie i Termicheskaya Obrabotka Metallov, 1984, 1, p 20–22 O.G. Kasatkin, B.B. Vinokur, and V.L. Pilyushenko, Computational Models for Determination of the Critical Points of Steel, Metallovedenie i Termicheskaya Obrabotka Metallov, 1984, 1, p 20–22
28.
go back to reference J. Trzaska and L.A. Dobrzaski, Modelling of CCT Diagrams for Engineering and Constructional Steels, J. Mater. Process. Technol., 2007, 192–193, p 504–510CrossRef J. Trzaska and L.A. Dobrzaski, Modelling of CCT Diagrams for Engineering and Constructional Steels, J. Mater. Process. Technol., 2007, 192–193, p 504–510CrossRef
29.
go back to reference B. Pawłowski, Critical Points of Hypoeutectoid Steel - Prediction of Pearlite Dissolution Finish Temperature Ac1f, J. Achiev. Mater. Manuf. Eng., 2011, 49, p 331–337 B. Pawłowski, Critical Points of Hypoeutectoid Steel - Prediction of Pearlite Dissolution Finish Temperature Ac1f, J. Achiev. Mater. Manuf. Eng., 2011, 49, p 331–337
30.
go back to reference S. Vyazokin, Evaluation of Activation Energy of Thermally Stimulated Solid-State Reactions Under Arbitrary Variation of Temperature, J. Comput. Chem., 1997, 18, p 393–402CrossRef S. Vyazokin, Evaluation of Activation Energy of Thermally Stimulated Solid-State Reactions Under Arbitrary Variation of Temperature, J. Comput. Chem., 1997, 18, p 393–402CrossRef
31.
go back to reference K.S. Jhajj, S.R. Slezak, and K.J. Daun, Inferring the Specific Heat of an Ultra High Strength Steel During the Heating Stage of Hot Forming Die Quenching, Through Inverse Analysis, Appl. Therm. Eng., 2015, 83, p 98–107CrossRef K.S. Jhajj, S.R. Slezak, and K.J. Daun, Inferring the Specific Heat of an Ultra High Strength Steel During the Heating Stage of Hot Forming Die Quenching, Through Inverse Analysis, Appl. Therm. Eng., 2015, 83, p 98–107CrossRef
32.
go back to reference Lehmann, H.: Developments in the Field of Schwartz Heat Treatment Furnaces for Press Hardening Industry, in 3rd International Conference on Hot Sheet Metal Forming of High-performance Steel Proceedings, Kassel, Germany, 2011 (p 13–17) Lehmann, H.: Developments in the Field of Schwartz Heat Treatment Furnaces for Press Hardening Industry, in 3rd International Conference on Hot Sheet Metal Forming of High-performance Steel Proceedings, Kassel, Germany, 2011 (p 13–17)
33.
go back to reference M. Rappaz, Modelling of Microstructure Formation in Solidification Processes, Int. Mater. Rev., 1989, 34, p 93–124CrossRef M. Rappaz, Modelling of Microstructure Formation in Solidification Processes, Int. Mater. Rev., 1989, 34, p 93–124CrossRef
34.
go back to reference ArcelorMittal, Properties of Usibor® 1500 P ArcelorMittal, Properties of Usibor® 1500 P
35.
go back to reference Stull, D.R., Prophet, H.: JANAF Thermochemical Tables. No. NSRDS-NBS-37. National Standard Reference Data System, 1971 Stull, D.R., Prophet, H.: JANAF Thermochemical Tables. No. NSRDS-NBS-37. National Standard Reference Data System, 1971
36.
go back to reference G.P. Krielaart, C.M. Brakman, and S. Zwaag, Analysis of Phase Transformation in Fe–C Alloys Using Differential Scanning Calorimetry, J. Mater. Sci., 1996, 51, p 1501–1508CrossRef G.P. Krielaart, C.M. Brakman, and S. Zwaag, Analysis of Phase Transformation in Fe–C Alloys Using Differential Scanning Calorimetry, J. Mater. Sci., 1996, 51, p 1501–1508CrossRef
37.
go back to reference Twynstra, M.G., Daun, K.J., Caron, E.F.J.R., Adam, N., Womack, D.: ASME Summer Heat Transfer Conference (Minneapolis MN, 2013) Twynstra, M.G., Daun, K.J., Caron, E.F.J.R., Adam, N., Womack, D.: ASME Summer Heat Transfer Conference (Minneapolis MN, 2013)
38.
go back to reference Q. Lai, M. Goune, A. Perlade, T. Pardoen, P. Jacques, O. Bouaziz, and Y. Brechet, Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe–0.1 C–3.5 Mn Steel, Metall. Mater. Trans. A, 2016, 47, p 3375–3386CrossRef Q. Lai, M. Goune, A. Perlade, T. Pardoen, P. Jacques, O. Bouaziz, and Y. Brechet, Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe–0.1 C–3.5 Mn Steel, Metall. Mater. Trans. A, 2016, 47, p 3375–3386CrossRef
39.
go back to reference J. Kučera and K. Stránský, Diffusion in Iron, Iron Solid Solutions and Steels, Mater. Sci. Eng., 1982, 52, p 1–38CrossRef J. Kučera and K. Stránský, Diffusion in Iron, Iron Solid Solutions and Steels, Mater. Sci. Eng., 1982, 52, p 1–38CrossRef
Metadata
Title
Development of an Austenitization Kinetics Model for 22MnB5 Steel
Authors
M. Di Ciano
N. Field
M. A. Wells
K. J. Daun
Publication date
07-03-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 4/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3262-5

Other articles of this Issue 4/2018

Journal of Materials Engineering and Performance 4/2018 Go to the issue

Premium Partners