Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 9/2020

22-04-2020 | Research Article-Chemical Engineering

Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application

Authors: K. Y. Mudi, A. S. Abdulkareem, A. S. Kovo, O. S. Azeez, J. O. Tijani, E. J. Eterigho

Published in: Arabian Journal for Science and Engineering | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K2PtCl4) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mgpt/cm2 in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Afolabi, A.S.: Development of Pt electro catalytic electrodes for proton exchange membrane fuel cell. PhD Thesis, University of the Witwatersrand, Johannesburg, pp. 115–142 (2009) Afolabi, A.S.: Development of Pt electro catalytic electrodes for proton exchange membrane fuel cell. PhD Thesis, University of the Witwatersrand, Johannesburg, pp. 115–142 (2009)
2.
go back to reference Noramalina B.M.: Development of catalysts and catalyst supports for polymer electrolyte fuel cells. Ph.D Thesis, University College, London, Torrington, London, pp. 25–38 (2014) Noramalina B.M.: Development of catalysts and catalyst supports for polymer electrolyte fuel cells. Ph.D Thesis, University College, London, Torrington, London, pp. 25–38 (2014)
5.
6.
go back to reference Rabis, A.; Rodriguez, P.; Schmidt, T.J.: Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal. J. 2, 864–890 (2012)CrossRef Rabis, A.; Rodriguez, P.; Schmidt, T.J.: Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal. J. 2, 864–890 (2012)CrossRef
7.
go back to reference David, S.; Isabel, S.; Rafael, M.; María, J.; Lázaro, A.S.; Vincenzo, B.; Antonino, S.A.: Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells. Appl. Catal. B J. Environ. 132–133, 22–27 (2013) David, S.; Isabel, S.; Rafael, M.; María, J.; Lázaro, A.S.; Vincenzo, B.; Antonino, S.A.: Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells. Appl. Catal. B J. Environ. 132–133, 22–27 (2013)
8.
go back to reference Seth, L.K.; Wenzhen, L.; Odysseas, P.; Thomas, M.M.; Jeremy, S.; Pradeep, H.: The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported Pt by polyol processing techniques. Carbon J. 46, 1276–1284 (2008)CrossRef Seth, L.K.; Wenzhen, L.; Odysseas, P.; Thomas, M.M.; Jeremy, S.; Pradeep, H.: The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported Pt by polyol processing techniques. Carbon J. 46, 1276–1284 (2008)CrossRef
9.
go back to reference Li, W.; Mahesh, W.; Zhongwei, C.; Paul, L.; Yushan, Y.: Pt nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon J. 48, 995–1003 (2010)CrossRef Li, W.; Mahesh, W.; Zhongwei, C.; Paul, L.; Yushan, Y.: Pt nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon J. 48, 995–1003 (2010)CrossRef
10.
go back to reference Iuliia, M.: Synthesis and characterisation of nanofibre supports for pt as electrodes for polymer electrolyte fuel cells. PhD Thesis, University of Montpellier, Montpellier (2014) Iuliia, M.: Synthesis and characterisation of nanofibre supports for pt as electrodes for polymer electrolyte fuel cells. PhD Thesis, University of Montpellier, Montpellier (2014)
11.
go back to reference Sergey, A.G.; Vladimir, N.F.; Elena, K.L.; Alexander, S.G.; Dmitri, G.B.; Xing, W.; Junjie, G.: CNF-supported Pt electrocatalysts synthesized using plasma-assisted sputtering in pulse conditions for the application in a high-temperature PEM fuel cell. Int. J. Electrochem. Sci. 11, 2085–2096 (2016) Sergey, A.G.; Vladimir, N.F.; Elena, K.L.; Alexander, S.G.; Dmitri, G.B.; Xing, W.; Junjie, G.: CNF-supported Pt electrocatalysts synthesized using plasma-assisted sputtering in pulse conditions for the application in a high-temperature PEM fuel cell. Int. J. Electrochem. Sci. 11, 2085–2096 (2016)
12.
go back to reference Hyung-Suk, O.; Jong-Gil, O.; Hansung, K.: Modification of polyol process for synthesis of highly Pt loaded Pt–carbon catalysts for fuel cells. J. Power Sources 183, 600–603 (2008)CrossRef Hyung-Suk, O.; Jong-Gil, O.; Hansung, K.: Modification of polyol process for synthesis of highly Pt loaded Pt–carbon catalysts for fuel cells. J. Power Sources 183, 600–603 (2008)CrossRef
14.
go back to reference Sajid, H.; Heiki, E.; Nadezda, K.; Maido, M.; Mihkel, R.; Väino, S.; Gilberto, M.; Kaido, T.: Pt particles electrochemically deposited on multiwalled carbon nanotubes for oxygen reduction reaction in acid media. J. Electrochem. Soc. 164(9), F1014–F1021 (2017)CrossRef Sajid, H.; Heiki, E.; Nadezda, K.; Maido, M.; Mihkel, R.; Väino, S.; Gilberto, M.; Kaido, T.: Pt particles electrochemically deposited on multiwalled carbon nanotubes for oxygen reduction reaction in acid media. J. Electrochem. Soc. 164(9), F1014–F1021 (2017)CrossRef
15.
go back to reference Roxana, M.; Dragoș-Toader, P.; Gabriela, M.; Nicolae, V.; Nicolae, V.: Carbon nanofibers decorated with Pt–Co alloy nanoparticles as catalysts for electrochemical cell applications synthesis and structural characterization. Int. J. Electrochem. Sci. 12, 4597–4609 (2017). https://doi.org/10.20964/2017.05.25CrossRef Roxana, M.; Dragoș-Toader, P.; Gabriela, M.; Nicolae, V.; Nicolae, V.: Carbon nanofibers decorated with Pt–Co alloy nanoparticles as catalysts for electrochemical cell applications synthesis and structural characterization. Int. J. Electrochem. Sci. 12, 4597–4609 (2017). https://​doi.​org/​10.​20964/​2017.​05.​25CrossRef
16.
go back to reference Aminul, I.M.; Anwarul, K.B.; Saidul, I.M.: A review on chemical synthesis process of Pt nanoparticles. Asia Pac. J. Energy Environ. 1(2), 107 (2014)CrossRef Aminul, I.M.; Anwarul, K.B.; Saidul, I.M.: A review on chemical synthesis process of Pt nanoparticles. Asia Pac. J. Energy Environ. 1(2), 107 (2014)CrossRef
18.
go back to reference Calvillo, L.; Gangeri, M.; Perathoner, S.; Centi, G.; Moliner, R.; Lázaro, M.J.: Synthesis and performance of Pt supported on ordered mesoporous carbons as catalyst for PEM fuel cells: effect of the surface chemistry of the support. Int. J. Hydrogen Energy 36, 9805–9814 (2011)CrossRef Calvillo, L.; Gangeri, M.; Perathoner, S.; Centi, G.; Moliner, R.; Lázaro, M.J.: Synthesis and performance of Pt supported on ordered mesoporous carbons as catalyst for PEM fuel cells: effect of the surface chemistry of the support. Int. J. Hydrogen Energy 36, 9805–9814 (2011)CrossRef
19.
go back to reference Bessel, C.A.; Kate, L.; Rodriguez, N.M.: Terry KBR (2001) Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B. 105(6), 1115–1118 (2001)CrossRef Bessel, C.A.; Kate, L.; Rodriguez, N.M.: Terry KBR (2001) Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B. 105(6), 1115–1118 (2001)CrossRef
20.
go back to reference Antolini, E.: Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J. Mater. Sci. 38, 2995–3005 (2003)CrossRef Antolini, E.: Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J. Mater. Sci. 38, 2995–3005 (2003)CrossRef
22.
go back to reference Asanda, N.: Electrochemical investigation of Pt nanoparticles supported on carbon nanotubes as cathode electrocatalysts for direct methanol fuel cell. A thesis submitted in fulfillment of the requirements for the degree of Magister Scientiae in the Department of Chemistry, University of the Western cape 44–54 62 (2010) Asanda, N.: Electrochemical investigation of Pt nanoparticles supported on carbon nanotubes as cathode electrocatalysts for direct methanol fuel cell. A thesis submitted in fulfillment of the requirements for the degree of Magister Scientiae in the Department of Chemistry, University of the Western cape 44–54 62 (2010)
23.
go back to reference Yehya, M.A.; Abdullah, A.; Ahmad, T.J.; Ma’an,, F.R.A.: Synthesis and characterization of carbon nanofibers grown on powdered activated carbon. J. Nanotechnol. 2016, 1–10 (2016) Yehya, M.A.; Abdullah, A.; Ahmad, T.J.; Ma’an,, F.R.A.: Synthesis and characterization of carbon nanofibers grown on powdered activated carbon. J. Nanotechnol. 2016, 1–10 (2016)
24.
go back to reference Idowu, A.O.: Development of a suitable bimetallic (Fe–Co) catalyst on kaolin support for carbon nanotube synthesis. ME Thesis Federal University of Technology, Minna (2016) Idowu, A.O.: Development of a suitable bimetallic (Fe–Co) catalyst on kaolin support for carbon nanotube synthesis. ME Thesis Federal University of Technology, Minna (2016)
26.
go back to reference Chang-Seop, L.; Yura, H.: Preparation and Characterization of CNF and its Composites by Chemical Vapor Deposition, vol 1. Open Book Publication, pp 2–21 (2016) Chang-Seop, L.; Yura, H.: Preparation and Characterization of CNF and its Composites by Chemical Vapor Deposition, vol 1. Open Book Publication, pp 2–21 (2016)
27.
go back to reference Alhassan, M.I.: Formulation of bimetallic (Fe–Co) catalyst on CaCO3 support for Carbon nanotube Synthesis. M.E. Thesis Federal University of Technology, Minna (2016) Alhassan, M.I.: Formulation of bimetallic (Fe–Co) catalyst on CaCO3 support for Carbon nanotube Synthesis. M.E. Thesis Federal University of Technology, Minna (2016)
30.
go back to reference Vinila, V.S.; Jacob, R.; Mony, A.; Nair, H.G.; Issac, S.; Rajan, S.; Nair, A.S.; Satheesh, D.J.; Isac, J.: X-ray diffraction analysis of nano crystalline ceramic PbBaTiO3. Cryst. Struct. Theory Appl. 3, 57–65 (2014) Vinila, V.S.; Jacob, R.; Mony, A.; Nair, H.G.; Issac, S.; Rajan, S.; Nair, A.S.; Satheesh, D.J.; Isac, J.: X-ray diffraction analysis of nano crystalline ceramic PbBaTiO3. Cryst. Struct. Theory Appl. 3, 57–65 (2014)
31.
go back to reference Xubin, P.; Iliana, M.R.; Ray, M.; Jingbo, L.: Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Colloids Surf. B J. Biointerfaces 77, 82–89 (2010)CrossRef Xubin, P.; Iliana, M.R.; Ray, M.; Jingbo, L.: Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Colloids Surf. B J. Biointerfaces 77, 82–89 (2010)CrossRef
32.
go back to reference Theivasanthi, T.; Alagar, M.: Nano sized copper particles by electrolytic synthesis and characterizations. Int. J. Phys. Sci. 6(15), 3662–3671 (2011) Theivasanthi, T.; Alagar, M.: Nano sized copper particles by electrolytic synthesis and characterizations. Int. J. Phys. Sci. 6(15), 3662–3671 (2011)
34.
go back to reference Jäger, R.; Härk, E.; Kasatkin, P.E.; Pikma, P.; Joost, U.; Paiste, P.; Aruväli, J.; Kallio, T.; Jiang, H.; Lust, E.: Carbide derived carbon supported Pt nanoparticles with optimum size and amount for efficient oxygen reduction reaction kinetics. J. Electrochem. Soc. 164(4), 448–453 (2017)CrossRef Jäger, R.; Härk, E.; Kasatkin, P.E.; Pikma, P.; Joost, U.; Paiste, P.; Aruväli, J.; Kallio, T.; Jiang, H.; Lust, E.: Carbide derived carbon supported Pt nanoparticles with optimum size and amount for efficient oxygen reduction reaction kinetics. J. Electrochem. Soc. 164(4), 448–453 (2017)CrossRef
38.
go back to reference Shukla, S.: Experimental analysis of inkjet printed polymer electrolyte fuel cell electrodes. PhD thesis, University of Alberta, Edmonton (2016) Shukla, S.: Experimental analysis of inkjet printed polymer electrolyte fuel cell electrodes. PhD thesis, University of Alberta, Edmonton (2016)
39.
go back to reference Liang, H.; Koji, M.; Wenbin, G.; Chao-Yang, W.: Modeling and experimental validation of Pt loading and electrode composition effects in PEM fuel cells. J. Electrochem. Soc. 162(8), 854–867 (2015)CrossRef Liang, H.; Koji, M.; Wenbin, G.; Chao-Yang, W.: Modeling and experimental validation of Pt loading and electrode composition effects in PEM fuel cells. J. Electrochem. Soc. 162(8), 854–867 (2015)CrossRef
40.
go back to reference Rashmi, S.; Singh, M.K.; Sushmita, B.; Ashish, S.; Kohli, D.K.; Prakash, C.G.; Meenakshi, S.; Gupta, P.K.: Facile synthesis of highly conducting and mesoporous carbon aerogel as Pt support for PEM fuel cells. Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydCrossRef Rashmi, S.; Singh, M.K.; Sushmita, B.; Ashish, S.; Kohli, D.K.; Prakash, C.G.; Meenakshi, S.; Gupta, P.K.: Facile synthesis of highly conducting and mesoporous carbon aerogel as Pt support for PEM fuel cells. Int. J. Hydrogen Energy (2017). https://​doi.​org/​10.​1016/​j.​ijhydCrossRef
41.
go back to reference Morawietz, T.; Handl, M.; Oldani, C.; Friedrich, K.A.; Hiesgen, R.: Influence of water and temperature on ionomer in catalytic layers and membranes of fuel cells and electrolyzers evaluated by AFM. In: 7th International Conference on Fundamentals and Development of Fuel Cell, pp 1–12 (2018). https://doi.org/10.1002/fuce.201700113 Morawietz, T.; Handl, M.; Oldani, C.; Friedrich, K.A.; Hiesgen, R.: Influence of water and temperature on ionomer in catalytic layers and membranes of fuel cells and electrolyzers evaluated by AFM. In: 7th International Conference on Fundamentals and Development of Fuel Cell, pp 1–12 (2018). https://​doi.​org/​10.​1002/​fuce.​201700113
42.
go back to reference Young-Gab, C.; Chang-Soo, K.; Dong-Hyun, P.; Dong-Ryul, S.: Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. J. Power Sources 71, 174–178 (2012) Young-Gab, C.; Chang-Soo, K.; Dong-Hyun, P.; Dong-Ryul, S.: Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. J. Power Sources 71, 174–178 (2012)
43.
go back to reference Neetu, J.; Palanisamy, R.; Elena, B.; Xiaojuan, T.; Feihu, W.; Mikhail, E.; Robert, C.H.: Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci. Rep. 3, 2257 (2013)CrossRef Neetu, J.; Palanisamy, R.; Elena, B.; Xiaojuan, T.; Feihu, W.; Mikhail, E.; Robert, C.H.: Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci. Rep. 3, 2257 (2013)CrossRef
46.
go back to reference Shuang, M.A.; Mikkel, J.L.: Performance of the electrode based on silicon carbide supported Pt catalyst for proton exchange membrane fuel cells. J. Electroanal. Chem. 791, 175–184 (2017)CrossRef Shuang, M.A.; Mikkel, J.L.: Performance of the electrode based on silicon carbide supported Pt catalyst for proton exchange membrane fuel cells. J. Electroanal. Chem. 791, 175–184 (2017)CrossRef
Metadata
Title
Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application
Authors
K. Y. Mudi
A. S. Abdulkareem
A. S. Kovo
O. S. Azeez
J. O. Tijani
E. J. Eterigho
Publication date
22-04-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 9/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04498-3

Other articles of this Issue 9/2020

Arabian Journal for Science and Engineering 9/2020 Go to the issue

Premium Partners