Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2021

20-04-2021

Development of environmentally friendly inkjet printable carbon nanotube‐based conductive ink for flexible sensors: effects of concentration and functionalization

Authors: John O. Akindoyo, Nurul Hidayah Ismail, M. Mariatti

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The fabrication of environmentally friendly printed flexible sensors is still an emerging technology, but with vast potential applications. Among the available printing techniques, inkjet printing is considered as a promising technique for flexible electronics because it enables high volume and versatile manufacturing, at low environmental impact. This study demonstrates a simple and facile method of preparing an environmentally benign water-based conductive ink, by dispersing functionalized and non-functionalized multi-walled carbon nanotubes (MWCNTs) in aqueous solution with the help of a biopolymer surfactant. The concentration of CNTs in the ink formulation was varied from 0.25 to 0.75 wt%, and additives such as triton-x 100, polypropylene glycol, and defoamer were added to achieve desirable ink properties. Inkjet printable ink was produced, and it was observed that the conductivity of the printed pattern is dependent on the printing pass. In addition, it was found that as the number of printing layer increases, there is higher synergy between concentration and number of printing pass in F-MWCNTs printed ink to produce higher electrical conductivity, compared to MWCNTs printed ink. Generally, the findings of this study could potentially open opportunities for global economic growth through the applications of printed, low cost and environmentally friendly flexible sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Cano-Raya et al., Chemistry of solid metal-based inks and pastes for printed electronics—a review. Appl. Mater. Today 15, 416–430 (2019)CrossRef C. Cano-Raya et al., Chemistry of solid metal-based inks and pastes for printed electronics—a review. Appl. Mater. Today 15, 416–430 (2019)CrossRef
2.
go back to reference A.M. Abdelkader et al., Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 035016 (2017)CrossRef A.M. Abdelkader et al., Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 035016 (2017)CrossRef
3.
go back to reference L. Zhou et al., All-organic active matrix flexible display. 88(8), 083502 (2006) L. Zhou et al., All-organic active matrix flexible display. 88(8), 083502 (2006)
4.
go back to reference N. Karim et al., All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J. Mater. Chem. C 5(44), 11640–11648 (2017)CrossRef N. Karim et al., All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J. Mater. Chem. C 5(44), 11640–11648 (2017)CrossRef
5.
go back to reference M.V. Kulkarni et al., Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B 178, 140–143 (2013)CrossRef M.V. Kulkarni et al., Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B 178, 140–143 (2013)CrossRef
6.
go back to reference N. Matsuhisa et al., Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16(8), 834–840 (2017)CrossRef N. Matsuhisa et al., Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16(8), 834–840 (2017)CrossRef
7.
go back to reference M. Jung et al., All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 57(3), 571–580 (2010)CrossRef M. Jung et al., All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 57(3), 571–580 (2010)CrossRef
8.
go back to reference A. Chauraya et al., Inkjet printed dipole antennas on textiles for wearable communications. IET Microw. Antennas Propag. 7, 760–767 (2013) A. Chauraya et al., Inkjet printed dipole antennas on textiles for wearable communications. IET Microw. Antennas Propag. 7, 760–767 (2013)
9.
go back to reference G.H. Gelinck et al., Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3(2), 106–110 (2004)CrossRef G.H. Gelinck et al., Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3(2), 106–110 (2004)CrossRef
10.
go back to reference N. Matsuhisa et al., Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6(1), 7461 (2015)CrossRef N. Matsuhisa et al., Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6(1), 7461 (2015)CrossRef
11.
go back to reference H. Menon, R. Aiswarya, K.P. Surendran, Screen printable MWCNT inks for printed electronics. RSC Adv. 7(70), 44076–44081 (2017)CrossRef H. Menon, R. Aiswarya, K.P. Surendran, Screen printable MWCNT inks for printed electronics. RSC Adv. 7(70), 44076–44081 (2017)CrossRef
12.
go back to reference D.J. Finn, M. Lotya, J.N. Coleman, Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 7(17), 9254–9261 (2015)CrossRef D.J. Finn, M. Lotya, J.N. Coleman, Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 7(17), 9254–9261 (2015)CrossRef
13.
go back to reference E.B. Secor et al., Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRef E.B. Secor et al., Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRef
14.
go back to reference M.F.L. De Volder et al., Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRef M.F.L. De Volder et al., Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRef
15.
go back to reference S. Azoubel, S. Shemesh, S. Magdassi, Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes. Nanotechnology 23(34), 344003 (2012)CrossRef S. Azoubel, S. Shemesh, S. Magdassi, Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes. Nanotechnology 23(34), 344003 (2012)CrossRef
16.
go back to reference N. Karim et al., All Inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Sci. Rep. 9(1), 8035 (2019)CrossRef N. Karim et al., All Inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Sci. Rep. 9(1), 8035 (2019)CrossRef
17.
go back to reference E.B. Secor et al., Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef E.B. Secor et al., Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef
18.
go back to reference M.N. Karim et al., Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics. J. Mater. Sci. 50(13), 4576–4585 (2015)CrossRef M.N. Karim et al., Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics. J. Mater. Sci. 50(13), 4576–4585 (2015)CrossRef
19.
go back to reference S. Kholghi Eshkalak et al., A review on inkjet printing of CNT composites for smart applications. Appl. Mater. Today 9, 372–386 (2017)CrossRef S. Kholghi Eshkalak et al., A review on inkjet printing of CNT composites for smart applications. Appl. Mater. Today 9, 372–386 (2017)CrossRef
20.
go back to reference F. Loghin et al., A facile and efficient protocol for preparing residual-free single-walled carbon nanotube films for stable sensing applications. Nanomaterials 9(3), 471 (2019)CrossRef F. Loghin et al., A facile and efficient protocol for preparing residual-free single-walled carbon nanotube films for stable sensing applications. Nanomaterials 9(3), 471 (2019)CrossRef
21.
go back to reference A.N. Omrani et al., Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam. Relat. Mater. 93, 96–104 (2019)CrossRef A.N. Omrani et al., Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam. Relat. Mater. 93, 96–104 (2019)CrossRef
22.
go back to reference L. Chen et al., Rheological behaviors of nanofluids containing multi-walled carbon nanotube. J. Dispersion Sci. Technol. 32(4), 550–554 (2011)CrossRef L. Chen et al., Rheological behaviors of nanofluids containing multi-walled carbon nanotube. J. Dispersion Sci. Technol. 32(4), 550–554 (2011)CrossRef
23.
go back to reference L. Maillaud et al., Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes. Langmuir 31(21), 5928–5934 (2015)CrossRef L. Maillaud et al., Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes. Langmuir 31(21), 5928–5934 (2015)CrossRef
24.
go back to reference E. Patrice et al., Shear history effect on the viscosity of carbon nanotubes water-based nanofluid. Curr. Nanosci. 9(2), 225–230 (2013)CrossRef E. Patrice et al., Shear history effect on the viscosity of carbon nanotubes water-based nanofluid. Curr. Nanosci. 9(2), 225–230 (2013)CrossRef
25.
go back to reference N.H. Ismail, J.O. Akindoyo, M. Mariatti, Solvent mediated dispersion of carbon nanotubes for glass fibre surface modification—suspensions stability and its effects on mechanical, interlaminar and dynamic mechanical properties of modified glass fibre reinforced epoxy laminates. Compos. Part A: Appl. Sci. Manuf. 139, 106091 (2020)CrossRef N.H. Ismail, J.O. Akindoyo, M. Mariatti, Solvent mediated dispersion of carbon nanotubes for glass fibre surface modification—suspensions stability and its effects on mechanical, interlaminar and dynamic mechanical properties of modified glass fibre reinforced epoxy laminates. Compos. Part A: Appl. Sci. Manuf. 139, 106091 (2020)CrossRef
26.
go back to reference Z. Xu et al., Efficient dispersion of carbon nanotube by synergistic effects of sisal cellulose nano-fiber and graphene oxide. Compos. Interfaces 24(3), 291–305 (2017)CrossRef Z. Xu et al., Efficient dispersion of carbon nanotube by synergistic effects of sisal cellulose nano-fiber and graphene oxide. Compos. Interfaces 24(3), 291–305 (2017)CrossRef
27.
go back to reference Y. Liu et al., Aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites. ACS Sustain. Chem. Eng. 6(3), 3291–3298 (2018)CrossRef Y. Liu et al., Aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites. ACS Sustain. Chem. Eng. 6(3), 3291–3298 (2018)CrossRef
28.
go back to reference T.S. Tran, N.K. Dutta, N.R. Choudhury, Graphene inks for printed flexible electronics: graphene dispersions, ink formulations, printing techniques and applications. Adv. Coll. Interface. Sci. 261, 41–61 (2018)CrossRef T.S. Tran, N.K. Dutta, N.R. Choudhury, Graphene inks for printed flexible electronics: graphene dispersions, ink formulations, printing techniques and applications. Adv. Coll. Interface. Sci. 261, 41–61 (2018)CrossRef
29.
go back to reference J. Hou et al., Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant. J. Colloid Interface Sci. 512, 750–757 (2018)CrossRef J. Hou et al., Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant. J. Colloid Interface Sci. 512, 750–757 (2018)CrossRef
30.
go back to reference L. Lin, H. Peng, G. Ding, Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl. Therm. Eng. 91, 163–171 (2015)CrossRef L. Lin, H. Peng, G. Ding, Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl. Therm. Eng. 91, 163–171 (2015)CrossRef
31.
go back to reference L. Yue et al., Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78, 268–278 (2014)CrossRef L. Yue et al., Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78, 268–278 (2014)CrossRef
32.
go back to reference R.P. Tortorich, J.-W. Choi, Inkjet printing of carbon nanotubes. Nanomaterials 3(3), 453–468 (2013)CrossRef R.P. Tortorich, J.-W. Choi, Inkjet printing of carbon nanotubes. Nanomaterials 3(3), 453–468 (2013)CrossRef
33.
go back to reference D. McManus et al., Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRef D. McManus et al., Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRef
34.
go back to reference K.-Y. Shin, J.-Y. Hong, J. Jang, Micropatterning of graphene sheets by inkjet printing and its Wideband Dipole-Antenna Application. Adv. Mater. 23(18), 2113–2118 (2011)CrossRef K.-Y. Shin, J.-Y. Hong, J. Jang, Micropatterning of graphene sheets by inkjet printing and its Wideband Dipole-Antenna Application. Adv. Mater. 23(18), 2113–2118 (2011)CrossRef
35.
go back to reference J.N. Israelachvili, Intermolecular and Surface Forces (Academic press, Cambridge, 2011). J.N. Israelachvili, Intermolecular and Surface Forces (Academic press, Cambridge, 2011).
36.
go back to reference V.S. Turkani et al., A highly sensitive printed humidity sensor based on a functionalized MWCNT/HEC composite for flexible electronics application. Nanoscale Adv. 1(6), 2311–2322 (2019)CrossRef V.S. Turkani et al., A highly sensitive printed humidity sensor based on a functionalized MWCNT/HEC composite for flexible electronics application. Nanoscale Adv. 1(6), 2311–2322 (2019)CrossRef
37.
go back to reference O.-S. Kwon et al., Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon 58, 116–127 (2013)CrossRef O.-S. Kwon et al., Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon 58, 116–127 (2013)CrossRef
38.
go back to reference S. Shengbo et al., Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29(25), 255202 (2018)CrossRef S. Shengbo et al., Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29(25), 255202 (2018)CrossRef
39.
go back to reference Y.Z.N. Htwe, I.N. Hidayah, M. Mariatti, Performance of inkjet-printed strain sensor based on graphene/silver nanoparticles hybrid conductive inks on polyvinyl alcohol substrate. J. Mater. Sci.: Mater. Electron. 31(18), 15361–15371 (2020) Y.Z.N. Htwe, I.N. Hidayah, M. Mariatti, Performance of inkjet-printed strain sensor based on graphene/silver nanoparticles hybrid conductive inks on polyvinyl alcohol substrate. J. Mater. Sci.: Mater. Electron. 31(18), 15361–15371 (2020)
Metadata
Title
Development of environmentally friendly inkjet printable carbon nanotube‐based conductive ink for flexible sensors: effects of concentration and functionalization
Authors
John O. Akindoyo
Nurul Hidayah Ismail
M. Mariatti
Publication date
20-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05900-y

Other articles of this Issue 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Go to the issue