Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2021

20.04.2021

Development of environmentally friendly inkjet printable carbon nanotube‐based conductive ink for flexible sensors: effects of concentration and functionalization

verfasst von: John O. Akindoyo, Nurul Hidayah Ismail, M. Mariatti

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fabrication of environmentally friendly printed flexible sensors is still an emerging technology, but with vast potential applications. Among the available printing techniques, inkjet printing is considered as a promising technique for flexible electronics because it enables high volume and versatile manufacturing, at low environmental impact. This study demonstrates a simple and facile method of preparing an environmentally benign water-based conductive ink, by dispersing functionalized and non-functionalized multi-walled carbon nanotubes (MWCNTs) in aqueous solution with the help of a biopolymer surfactant. The concentration of CNTs in the ink formulation was varied from 0.25 to 0.75 wt%, and additives such as triton-x 100, polypropylene glycol, and defoamer were added to achieve desirable ink properties. Inkjet printable ink was produced, and it was observed that the conductivity of the printed pattern is dependent on the printing pass. In addition, it was found that as the number of printing layer increases, there is higher synergy between concentration and number of printing pass in F-MWCNTs printed ink to produce higher electrical conductivity, compared to MWCNTs printed ink. Generally, the findings of this study could potentially open opportunities for global economic growth through the applications of printed, low cost and environmentally friendly flexible sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Cano-Raya et al., Chemistry of solid metal-based inks and pastes for printed electronics—a review. Appl. Mater. Today 15, 416–430 (2019)CrossRef C. Cano-Raya et al., Chemistry of solid metal-based inks and pastes for printed electronics—a review. Appl. Mater. Today 15, 416–430 (2019)CrossRef
2.
Zurück zum Zitat A.M. Abdelkader et al., Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 035016 (2017)CrossRef A.M. Abdelkader et al., Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 035016 (2017)CrossRef
3.
Zurück zum Zitat L. Zhou et al., All-organic active matrix flexible display. 88(8), 083502 (2006) L. Zhou et al., All-organic active matrix flexible display. 88(8), 083502 (2006)
4.
Zurück zum Zitat N. Karim et al., All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J. Mater. Chem. C 5(44), 11640–11648 (2017)CrossRef N. Karim et al., All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J. Mater. Chem. C 5(44), 11640–11648 (2017)CrossRef
5.
Zurück zum Zitat M.V. Kulkarni et al., Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B 178, 140–143 (2013)CrossRef M.V. Kulkarni et al., Ink-jet printed conducting polyaniline based flexible humidity sensor. Sens. Actuators B 178, 140–143 (2013)CrossRef
6.
Zurück zum Zitat N. Matsuhisa et al., Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16(8), 834–840 (2017)CrossRef N. Matsuhisa et al., Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16(8), 834–840 (2017)CrossRef
7.
Zurück zum Zitat M. Jung et al., All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 57(3), 571–580 (2010)CrossRef M. Jung et al., All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 57(3), 571–580 (2010)CrossRef
8.
Zurück zum Zitat A. Chauraya et al., Inkjet printed dipole antennas on textiles for wearable communications. IET Microw. Antennas Propag. 7, 760–767 (2013) A. Chauraya et al., Inkjet printed dipole antennas on textiles for wearable communications. IET Microw. Antennas Propag. 7, 760–767 (2013)
9.
Zurück zum Zitat G.H. Gelinck et al., Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3(2), 106–110 (2004)CrossRef G.H. Gelinck et al., Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3(2), 106–110 (2004)CrossRef
10.
Zurück zum Zitat N. Matsuhisa et al., Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6(1), 7461 (2015)CrossRef N. Matsuhisa et al., Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6(1), 7461 (2015)CrossRef
11.
Zurück zum Zitat H. Menon, R. Aiswarya, K.P. Surendran, Screen printable MWCNT inks for printed electronics. RSC Adv. 7(70), 44076–44081 (2017)CrossRef H. Menon, R. Aiswarya, K.P. Surendran, Screen printable MWCNT inks for printed electronics. RSC Adv. 7(70), 44076–44081 (2017)CrossRef
12.
Zurück zum Zitat D.J. Finn, M. Lotya, J.N. Coleman, Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 7(17), 9254–9261 (2015)CrossRef D.J. Finn, M. Lotya, J.N. Coleman, Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 7(17), 9254–9261 (2015)CrossRef
13.
Zurück zum Zitat E.B. Secor et al., Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRef E.B. Secor et al., Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRef
14.
Zurück zum Zitat M.F.L. De Volder et al., Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRef M.F.L. De Volder et al., Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRef
15.
Zurück zum Zitat S. Azoubel, S. Shemesh, S. Magdassi, Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes. Nanotechnology 23(34), 344003 (2012)CrossRef S. Azoubel, S. Shemesh, S. Magdassi, Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes. Nanotechnology 23(34), 344003 (2012)CrossRef
16.
Zurück zum Zitat N. Karim et al., All Inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Sci. Rep. 9(1), 8035 (2019)CrossRef N. Karim et al., All Inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Sci. Rep. 9(1), 8035 (2019)CrossRef
17.
Zurück zum Zitat E.B. Secor et al., Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef E.B. Secor et al., Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef
18.
Zurück zum Zitat M.N. Karim et al., Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics. J. Mater. Sci. 50(13), 4576–4585 (2015)CrossRef M.N. Karim et al., Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabrics. J. Mater. Sci. 50(13), 4576–4585 (2015)CrossRef
19.
Zurück zum Zitat S. Kholghi Eshkalak et al., A review on inkjet printing of CNT composites for smart applications. Appl. Mater. Today 9, 372–386 (2017)CrossRef S. Kholghi Eshkalak et al., A review on inkjet printing of CNT composites for smart applications. Appl. Mater. Today 9, 372–386 (2017)CrossRef
20.
Zurück zum Zitat F. Loghin et al., A facile and efficient protocol for preparing residual-free single-walled carbon nanotube films for stable sensing applications. Nanomaterials 9(3), 471 (2019)CrossRef F. Loghin et al., A facile and efficient protocol for preparing residual-free single-walled carbon nanotube films for stable sensing applications. Nanomaterials 9(3), 471 (2019)CrossRef
21.
Zurück zum Zitat A.N. Omrani et al., Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam. Relat. Mater. 93, 96–104 (2019)CrossRef A.N. Omrani et al., Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam. Relat. Mater. 93, 96–104 (2019)CrossRef
22.
Zurück zum Zitat L. Chen et al., Rheological behaviors of nanofluids containing multi-walled carbon nanotube. J. Dispersion Sci. Technol. 32(4), 550–554 (2011)CrossRef L. Chen et al., Rheological behaviors of nanofluids containing multi-walled carbon nanotube. J. Dispersion Sci. Technol. 32(4), 550–554 (2011)CrossRef
23.
Zurück zum Zitat L. Maillaud et al., Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes. Langmuir 31(21), 5928–5934 (2015)CrossRef L. Maillaud et al., Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes. Langmuir 31(21), 5928–5934 (2015)CrossRef
24.
Zurück zum Zitat E. Patrice et al., Shear history effect on the viscosity of carbon nanotubes water-based nanofluid. Curr. Nanosci. 9(2), 225–230 (2013)CrossRef E. Patrice et al., Shear history effect on the viscosity of carbon nanotubes water-based nanofluid. Curr. Nanosci. 9(2), 225–230 (2013)CrossRef
25.
Zurück zum Zitat N.H. Ismail, J.O. Akindoyo, M. Mariatti, Solvent mediated dispersion of carbon nanotubes for glass fibre surface modification—suspensions stability and its effects on mechanical, interlaminar and dynamic mechanical properties of modified glass fibre reinforced epoxy laminates. Compos. Part A: Appl. Sci. Manuf. 139, 106091 (2020)CrossRef N.H. Ismail, J.O. Akindoyo, M. Mariatti, Solvent mediated dispersion of carbon nanotubes for glass fibre surface modification—suspensions stability and its effects on mechanical, interlaminar and dynamic mechanical properties of modified glass fibre reinforced epoxy laminates. Compos. Part A: Appl. Sci. Manuf. 139, 106091 (2020)CrossRef
26.
Zurück zum Zitat Z. Xu et al., Efficient dispersion of carbon nanotube by synergistic effects of sisal cellulose nano-fiber and graphene oxide. Compos. Interfaces 24(3), 291–305 (2017)CrossRef Z. Xu et al., Efficient dispersion of carbon nanotube by synergistic effects of sisal cellulose nano-fiber and graphene oxide. Compos. Interfaces 24(3), 291–305 (2017)CrossRef
27.
Zurück zum Zitat Y. Liu et al., Aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites. ACS Sustain. Chem. Eng. 6(3), 3291–3298 (2018)CrossRef Y. Liu et al., Aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites. ACS Sustain. Chem. Eng. 6(3), 3291–3298 (2018)CrossRef
28.
Zurück zum Zitat T.S. Tran, N.K. Dutta, N.R. Choudhury, Graphene inks for printed flexible electronics: graphene dispersions, ink formulations, printing techniques and applications. Adv. Coll. Interface. Sci. 261, 41–61 (2018)CrossRef T.S. Tran, N.K. Dutta, N.R. Choudhury, Graphene inks for printed flexible electronics: graphene dispersions, ink formulations, printing techniques and applications. Adv. Coll. Interface. Sci. 261, 41–61 (2018)CrossRef
29.
Zurück zum Zitat J. Hou et al., Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant. J. Colloid Interface Sci. 512, 750–757 (2018)CrossRef J. Hou et al., Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant. J. Colloid Interface Sci. 512, 750–757 (2018)CrossRef
30.
Zurück zum Zitat L. Lin, H. Peng, G. Ding, Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl. Therm. Eng. 91, 163–171 (2015)CrossRef L. Lin, H. Peng, G. Ding, Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl. Therm. Eng. 91, 163–171 (2015)CrossRef
31.
Zurück zum Zitat L. Yue et al., Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78, 268–278 (2014)CrossRef L. Yue et al., Epoxy composites with carbon nanotubes and graphene nanoplatelets—dispersion and synergy effects. Carbon 78, 268–278 (2014)CrossRef
32.
Zurück zum Zitat R.P. Tortorich, J.-W. Choi, Inkjet printing of carbon nanotubes. Nanomaterials 3(3), 453–468 (2013)CrossRef R.P. Tortorich, J.-W. Choi, Inkjet printing of carbon nanotubes. Nanomaterials 3(3), 453–468 (2013)CrossRef
33.
Zurück zum Zitat D. McManus et al., Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRef D. McManus et al., Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRef
34.
Zurück zum Zitat K.-Y. Shin, J.-Y. Hong, J. Jang, Micropatterning of graphene sheets by inkjet printing and its Wideband Dipole-Antenna Application. Adv. Mater. 23(18), 2113–2118 (2011)CrossRef K.-Y. Shin, J.-Y. Hong, J. Jang, Micropatterning of graphene sheets by inkjet printing and its Wideband Dipole-Antenna Application. Adv. Mater. 23(18), 2113–2118 (2011)CrossRef
35.
Zurück zum Zitat J.N. Israelachvili, Intermolecular and Surface Forces (Academic press, Cambridge, 2011). J.N. Israelachvili, Intermolecular and Surface Forces (Academic press, Cambridge, 2011).
36.
Zurück zum Zitat V.S. Turkani et al., A highly sensitive printed humidity sensor based on a functionalized MWCNT/HEC composite for flexible electronics application. Nanoscale Adv. 1(6), 2311–2322 (2019)CrossRef V.S. Turkani et al., A highly sensitive printed humidity sensor based on a functionalized MWCNT/HEC composite for flexible electronics application. Nanoscale Adv. 1(6), 2311–2322 (2019)CrossRef
37.
Zurück zum Zitat O.-S. Kwon et al., Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon 58, 116–127 (2013)CrossRef O.-S. Kwon et al., Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper. Carbon 58, 116–127 (2013)CrossRef
38.
Zurück zum Zitat S. Shengbo et al., Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29(25), 255202 (2018)CrossRef S. Shengbo et al., Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29(25), 255202 (2018)CrossRef
39.
Zurück zum Zitat Y.Z.N. Htwe, I.N. Hidayah, M. Mariatti, Performance of inkjet-printed strain sensor based on graphene/silver nanoparticles hybrid conductive inks on polyvinyl alcohol substrate. J. Mater. Sci.: Mater. Electron. 31(18), 15361–15371 (2020) Y.Z.N. Htwe, I.N. Hidayah, M. Mariatti, Performance of inkjet-printed strain sensor based on graphene/silver nanoparticles hybrid conductive inks on polyvinyl alcohol substrate. J. Mater. Sci.: Mater. Electron. 31(18), 15361–15371 (2020)
Metadaten
Titel
Development of environmentally friendly inkjet printable carbon nanotube‐based conductive ink for flexible sensors: effects of concentration and functionalization
verfasst von
John O. Akindoyo
Nurul Hidayah Ismail
M. Mariatti
Publikationsdatum
20.04.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05900-y

Weitere Artikel der Ausgabe 9/2021

Journal of Materials Science: Materials in Electronics 9/2021 Zur Ausgabe

Neuer Inhalt