Skip to main content
Top
Published in: Polymer Science, Series D 3/2023

01-09-2023

Development of Methods for Testing Polymer Materials for Microbiological Resistance. Review

Authors: V. O. Startsev, A. A. Krivushina, T. V. Mineeva

Published in: Polymer Science, Series D | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Regularities of microbiological effects on the properties of polymers and polymer-composite materials in laboratory and natural conditions are considered. Specific examples show the results and main mechanisms of biodegradation under the influence of mold fungi and bacteria. The main disadvantage of domestic and foreign standards for testing polymeric materials for biostability is noted—the impossibility of determining the exact contribution of the action of fungi, bacteria, or other microorganisms to the change in the properties of materials from exposure to moisture, temperature, solar radiation, chemically active substances, and other abiotic environmental factors. Modern methodological approaches are shown that make it possible to perform tests with the reproduction of all aging factors and the exclusion of biological destructors from their composition. To accelerate the identification of biodestructor fungi, a technique for new-generation sequencing of DNA fragments was proposed and a variant of its successful application was considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. N. Kablov, “Innovative developments of FSUE ‘VIAM’ of the State Scientific Center of the Russian Federation for the implementation of the “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”,” Aviats. Mater. Tekhnol., No. 1, 3–33 (2015). https://doi.org/10.18577/2071-9140-2015-0-1-3-33CrossRef E. N. Kablov, “Innovative developments of FSUE ‘VIAM’ of the State Scientific Center of the Russian Federation for the implementation of the “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”,” Aviats. Mater. Tekhnol., No. 1, 3–33 (2015). https://​doi.​org/​10.​18577/​2071-9140-2015-0-1-3-33CrossRef
2.
go back to reference Aviation Materials. Handbook. Vol. 13. Climatic and Microbiological Resistance of Non-Metallic Materials, Ed. by E. N. Kablov (Moscow, 2015) [in Russian]. Aviation Materials. Handbook. Vol. 13. Climatic and Microbiological Resistance of Non-Metallic Materials, Ed. by E. N. Kablov (Moscow, 2015) [in Russian].
4.
go back to reference E. N. Kablov, A. V. Polyakova, Yu. S. Goryashnik, et al., “Microbiological testing of aviation materials,” Aviats. Prom-st’, No. 1, 35–40 (2011). E. N. Kablov, A. V. Polyakova, Yu. S. Goryashnik, et al., “Microbiological testing of aviation materials,” Aviats. Prom-st’, No. 1, 35–40 (2011).
5.
go back to reference A. V. Polyakova, A. A. Krivushina, Yu. S. Goryashnik, et al., “Tests for microbiological resistance in warm and humid climates,” Trudy VIAM, No. 7, 06 (2013). A. V. Polyakova, A. A. Krivushina, Yu. S. Goryashnik, et al., “Tests for microbiological resistance in warm and humid climates,” Trudy VIAM, No. 7, 06 (2013).
9.
go back to reference N. Lucas, C. Bienaime, C. Belloy, et al., “Polymer biodegradation: mechanisms and estimation techniques–a review,” Chemosphere 73, 429–442 (2008).CrossRefPubMed N. Lucas, C. Bienaime, C. Belloy, et al., “Polymer biodegradation: mechanisms and estimation techniques–a review,” Chemosphere 73, 429–442 (2008).CrossRefPubMed
10.
go back to reference A. A. Shah, F. Hasan, A. Hameed, and S. Ahmed, “Biological degradation of plastics: A comprehensive review,” Biotechnol. Adv. 26, 246–265 (2008).CrossRefPubMed A. A. Shah, F. Hasan, A. Hameed, and S. Ahmed, “Biological degradation of plastics: A comprehensive review,” Biotechnol. Adv. 26, 246–265 (2008).CrossRefPubMed
11.
go back to reference J. D. Gu and R. Mitchell, “Biodeterioration,” in The Prokaryotes: Applied Bacteriology and Biotechnology (Springer, 2013), pp. 309–341. J. D. Gu and R. Mitchell, “Biodeterioration,” in The Prokaryotes: Applied Bacteriology and Biotechnology (Springer, 2013), pp. 309–341.
12.
go back to reference J. A. Glaser, “Biological Degradation of Polymers in the Environment,” in Plastics in the Environment, Ed. by A. Gomiero (Intech Open, 2019), pp. 73–94. J. A. Glaser, “Biological Degradation of Polymers in the Environment,” in Plastics in the Environment, Ed. by A. Gomiero (Intech Open, 2019), pp. 73–94.
13.
go back to reference O. V. Startsev, G. P. Mashinskaya, and V. A. Yartsev, “Molecular mobility and relaxation processes in an epoxy matrix. 2. Effects of weathering in humid subtropical climate,” Mech. Compos. Mater. 20, 406–409 (1985).CrossRef O. V. Startsev, G. P. Mashinskaya, and V. A. Yartsev, “Molecular mobility and relaxation processes in an epoxy matrix. 2. Effects of weathering in humid subtropical climate,” Mech. Compos. Mater. 20, 406–409 (1985).CrossRef
15.
go back to reference I. G. Kanevskaya, Biological Damage to Industrial Materials (Nauka, Leningrad, 1984) [in Russian]. I. G. Kanevskaya, Biological Damage to Industrial Materials (Nauka, Leningrad, 1984) [in Russian].
16.
go back to reference A. Yu. Lugauskas, A. I. Mikul’skene, and D. Yu. Shlyauzhene, Catalog of Micromycetes–Biodestructors of Materials (Nauka, Moscow, 1987) [in Russian]. A. Yu. Lugauskas, A. I. Mikul’skene, and D. Yu. Shlyauzhene, Catalog of Micromycetes–Biodestructors of Materials (Nauka, Moscow, 1987) [in Russian].
17.
go back to reference GOST 9.048-89. Technical Products. Laboratory Test Methods for Mold Resistance (Izd. Standartov, Moscow, 1994) [in Russian]. GOST 9.048-89. Technical Products. Laboratory Test Methods for Mold Resistance (Izd. Standartov, Moscow, 1994) [in Russian].
18.
go back to reference GOST 9.049–91. Polymeric Materials and Their Components. Laboratory Test Methods for Mold Resistance (Izd. Standartov, Moscow, 1994) [in Russian]. GOST 9.049–91. Polymeric Materials and Their Components. Laboratory Test Methods for Mold Resistance (Izd. Standartov, Moscow, 1994) [in Russian].
19.
go back to reference GOST 9.050–75. Paint Coatings. Laboratory Test Methods for Mold Resistance (Izd. Standartov, Moscow, 2003) [in Russian]. GOST 9.050–75. Paint Coatings. Laboratory Test Methods for Mold Resistance (Izd. Standartov, Moscow, 2003) [in Russian].
20.
go back to reference GOST 9.053–75. Non-Metallic Materials and Products with Their Application. Test Method for Microbiological Stability Under Natural Conditions in the Atmosphere (Izd. Standartov, Moscow, 2003) [in Russian]. GOST 9.053–75. Non-Metallic Materials and Products with Their Application. Test Method for Microbiological Stability Under Natural Conditions in the Atmosphere (Izd. Standartov, Moscow, 2003) [in Russian].
21.
go back to reference GOST R 57859–2017. Polymer Composites. Test Methods for Exposure to Molds (Izd. Standartov, Moscow, 2017) [in Russian]. GOST R 57859–2017. Polymer Composites. Test Methods for Exposure to Molds (Izd. Standartov, Moscow, 2017) [in Russian].
22.
go back to reference V. F. Smirnov, A. S. Semicheva, O. N. Smirnova, et al., “On the issue of evaluating the fungi resistance of materials in some domestic standard test methods,” Mikolog. Fitopatolog., No. 6, 50–55 (2000). V. F. Smirnov, A. S. Semicheva, O. N. Smirnova, et al., “On the issue of evaluating the fungi resistance of materials in some domestic standard test methods,” Mikolog. Fitopatolog., No. 6, 50–55 (2000).
23.
go back to reference D. V. Kryazhev, V. F. Smirnov, O. N. Smirnova, et al., “Analysis of methods for assessing the biostability of industrial materials (criteria, approaches),” Vestn. Nizhni Novgorod Univ., No. 2, 118–124 (2013). D. V. Kryazhev, V. F. Smirnov, O. N. Smirnova, et al., “Analysis of methods for assessing the biostability of industrial materials (criteria, approaches),” Vestn. Nizhni Novgorod Univ., No. 2, 118–124 (2013).
24.
go back to reference ASTM D5247. Standard test method for determining the aerobic biodegradability of degradable plastics by specific microorganisms. ASTM D5247. Standard test method for determining the aerobic biodegradability of degradable plastics by specific microorganisms.
25.
go back to reference ASTM D5271. Standard test method for assessing the aerobic biodegradation of plastic materials in an activated-sludge-wastewater-treatment system. ASTM D5271. Standard test method for assessing the aerobic biodegradation of plastic materials in an activated-sludge-wastewater-treatment system.
26.
go back to reference ASTM D5338. Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions. ASTM D5338. Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions.
27.
go back to reference ASTM G21. Standard practice for determining resistance of synthetic polymeric materials to fungi. ASTM G21. Standard practice for determining resistance of synthetic polymeric materials to fungi.
28.
go back to reference ASTM G22. Standard practice for determining resistance of plastics to bacteria. ASTM G22. Standard practice for determining resistance of plastics to bacteria.
29.
go back to reference ISO 846 International Standard. Plastics–Evaluation on the Action of Microorganisms (ISO, 2019). ISO 846 International Standard. Plastics–Evaluation on the Action of Microorganisms (ISO, 2019).
30.
go back to reference A. M. Breister, M. A. Imam, Z. Zhou, et al., “Soil microbiomes mediate degradation of vinyl ester-based polymer composites,” Commun. Mater. 1, 101 (2020).CrossRef A. M. Breister, M. A. Imam, Z. Zhou, et al., “Soil microbiomes mediate degradation of vinyl ester-based polymer composites,” Commun. Mater. 1, 101 (2020).CrossRef
32.
go back to reference L. Pardi-Comensoli, M. Tonolla, A. Colpo, et al., “Microbial depolymerization of epoxy resins: A novel approach to a complex challenge,” Appl. Sci. 12, 466 (2022).CrossRef L. Pardi-Comensoli, M. Tonolla, A. Colpo, et al., “Microbial depolymerization of epoxy resins: A novel approach to a complex challenge,” Appl. Sci. 12, 466 (2022).CrossRef
33.
go back to reference A. Wiejak and B. Francke, “Testing and assessing method for the resistance of wood-plastic composites to the action of destroying fungi,” Materials 14, 1–14 (2021).CrossRef A. Wiejak and B. Francke, “Testing and assessing method for the resistance of wood-plastic composites to the action of destroying fungi,” Materials 14, 1–14 (2021).CrossRef
34.
go back to reference G. Wang, K. Chai, J. Wu, and F. Liu, “Effect of pseudomonas putida on the degradation of epoxy resin varnish coating in seawater,” Int. Biodeter. Biodegrad. 115, 156–163 (2016).CrossRef G. Wang, K. Chai, J. Wu, and F. Liu, “Effect of pseudomonas putida on the degradation of epoxy resin varnish coating in seawater,” Int. Biodeter. Biodegrad. 115, 156–163 (2016).CrossRef
35.
go back to reference P. A. Wagner, B. J. Little, K. R. Hart, et al., “Biodegradation of composite materials,” Int. Biodeter. Biodegrad. 38, 125–132 (1996).CrossRef P. A. Wagner, B. J. Little, K. R. Hart, et al., “Biodegradation of composite materials,” Int. Biodeter. Biodegrad. 38, 125–132 (1996).CrossRef
36.
go back to reference O. V. Startsev, M. V. Molokov, and V. T. Erofeev, “Investigation of the impact of mold fungi on wood and its protective coatings by dynamic mechanical spectroscopy,” Vse Mater. Entsiklopedicheskii Spravochnik, No. 4, 34–42 (2016). O. V. Startsev, M. V. Molokov, and V. T. Erofeev, “Investigation of the impact of mold fungi on wood and its protective coatings by dynamic mechanical spectroscopy,” Vse Mater. Entsiklopedicheskii Spravochnik, No. 4, 34–42 (2016).
37.
go back to reference O. V. Startsev, Yu. M. Vapirov, M. P. Lebedev, et al., “Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis,” Mech. Compos. Mater. 56, 227–240 (2020).CrossRef O. V. Startsev, Yu. M. Vapirov, M. P. Lebedev, et al., “Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis,” Mech. Compos. Mater. 56, 227–240 (2020).CrossRef
38.
go back to reference N. P. Andreeva, M. R. Pavlov, E. V. Nikolaev, et al., “Investigation of the influence of atmospheric factors on the properties of polymer structural fiberglass based on cyanoester in natural conditions of cold, temperate and tropical climates,” Trudy VIAM, No. 3, 12 (2019). https://doi.org/10.18577/2307-6046-2019-0-3-105-114 N. P. Andreeva, M. R. Pavlov, E. V. Nikolaev, et al., “Investigation of the influence of atmospheric factors on the properties of polymer structural fiberglass based on cyanoester in natural conditions of cold, temperate and tropical climates,” Trudy VIAM, No. 3, 12 (2019). https://​doi.​org/​10.​18577/​2307-6046-2019-0-3-105-114
39.
go back to reference N. Shinohara, C. Woo, N. Yamamoto, K. Hashimoto, et al., “Comparison of DNA sequencing and morphological identification techniques to characterize environmental fungal communities,” Sci. Rep. 11, 2663 (2021).CrossRef N. Shinohara, C. Woo, N. Yamamoto, K. Hashimoto, et al., “Comparison of DNA sequencing and morphological identification techniques to characterize environmental fungal communities,” Sci. Rep. 11, 2663 (2021).CrossRef
40.
go back to reference B. F. Tan, C. Ng, J. P. Nshimyimana, et al., “Next-generation sequencing (NGS) for assessment of microbial water quality: Current progress, challenges, and future opportunities,” Front. Microbiol. 6, 1027 (2015).CrossRefPubMedPubMedCentral B. F. Tan, C. Ng, J. P. Nshimyimana, et al., “Next-generation sequencing (NGS) for assessment of microbial water quality: Current progress, challenges, and future opportunities,” Front. Microbiol. 6, 1027 (2015).CrossRefPubMedPubMedCentral
41.
go back to reference M. Pang, Z. Huang, L. Lv, et al., “Seasonal succession of bacterial communities in cultured Caulerpa lentillifera detected by high-throughput sequencing,” Open Life Sci. 17, 10–21 (2022).CrossRefPubMedPubMedCentral M. Pang, Z. Huang, L. Lv, et al., “Seasonal succession of bacterial communities in cultured Caulerpa lentillifera detected by high-throughput sequencing,” Open Life Sci. 17, 10–21 (2022).CrossRefPubMedPubMedCentral
Metadata
Title
Development of Methods for Testing Polymer Materials for Microbiological Resistance. Review
Authors
V. O. Startsev
A. A. Krivushina
T. V. Mineeva
Publication date
01-09-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 3/2023
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421223030449

Other articles of this Issue 3/2023

Polymer Science, Series D 3/2023 Go to the issue

Premium Partners